
Contents

1 OBC Hardware documentation 6

1.1 Word abbreviation . 6

1.2 Determination of OBC HW functions 7

1.3 Overview of Cubesat hardware architecture 7

1.4 Choice of components . 9

1.4.1 The temperature . 9

1.4.2 Power consumption . 9

1.4.3 Radiation . 10

1.4.4 Size . 10

1.4.5 Availability . 10

1.5 Choice of component parts. 10

1.5.1 MCU . 11

1.5.2 RAM . 11

1.5.3 ROM/PROM/Flash memory 11

1.5.4 Logic . 12

1.6 Designing PCB . 12

1.7 Basic con�guration of the MCU 13

1.8 Memory management by the MCU 14

1.8.1 Byte access to memory 14

1.8.2 Decoding system . 16

1.9 Controlling the Flash memory in the OBC 20

1.9.1 Boot strap programming 20

1.9.2 Software controlled programming 20

1.9.3 Low level algorithm for �ash/burn ROM 22

1.10 The Camera Control Logic (CCL) 25

1.11 Bus arbitration while storing data in RAM 31

1.12 Hardware con�guration . 34

1.13 Power budget . 35

1.14 Weight budget . 37

1.15 Physical connections of the C161PI 38

1

CONTENTS

1.16 System Block Diagram . 40

1.17 Diagrams of the OBC . 41

1.17.1 Main MCU connections 44

1.17.2 RAM banks . 45

1.17.3 ROM banks . 46

1.17.4 DCL, CCL, counter etc. 47

2 Cubesat Internal I2C-Bus 49

2.1 I2C characteristic . 49

2.2 I2C Protocol . 52

2.3 Communication: . 55

2.4 Write data to slave over I2C bus 58

2.5 Conducting housekeeping from a slave over the I2C bus 59

2.6 Reading from a slave over the I2C bus 60

3 Software functions 64

3.1 OBC Bootsequence . 65

3.1.1 Basic boot from PROM 66

3.1.2 Checking for new software 66

3.1.3 Verifying new software 66

3.1.4 Advanced boot . 66

3.1.5 BootSelection-port . 67

3.1.6 Get temperature on the OBC and Camera 68

3.1.7 Flash Memory and load new data 69

3.1.8 Veri�e stored data . 70

3.2 Hamming corection of 2 errors 72

3.2.1 Encoding . 72

3.2.2 Decoding and corect 72

4 FPGA 75

4.1 Choosing a FPGA . 75

4.2 Designing the FPGA . 76

5 Payload 80

5.1 Introduction . 80

5.2 Preliminary research . 80

5.3 Construction of the camera 83

5.3.1 Interfacing the cameraunit 84

5.3.2 Exposure . 84

5.3.3 Robustness of camera. 85

5.4 Structure budget of camera. 86

2

CONTENTS

5.5 Lens . 86

5.5.1 Designing the lens . 86

5.5.2 Placing the lens in focus 87

5.5.3 Di�erent lenses . 88

5.5.4 Structure budget of lens 90

5.6 Structure between camera and lens. 90

I Appendix 91

A I2C houskeeping 93

B I2C read structure 95

C I2C write structure 96

D OBC software structure 97

3

CONTENTS

Introduction

This document has been prepared by group 732. It's purpose is to docu-

ment the design of the hardware to the On Board Computer system (OBC)

of the Cubesat. This document contains the detailed plans on how to build

the hardware, and also algorithms for the driver software.

4

OBC Hardware

Description: This document describes how the OBC has been designed.

First an introduction is made to what is do be done, then requirements for

the OBC is investigated. A description of how components were chosen is

included hereafter. The design includes besides the hardware of the com-

puter system, also address decoding mechanism, communication with pay-

load which includes DMA for this and also hardware level descriptions on

several special features like �ashing memory and taking picture.

Responsible group: pro 732, 01gr732@control.auc.dk

Date: 19.12.01

Rev.: 1.0

File name: OBC_design.pdf

Path: http://cubesat.auc.dk/documentation/OBC_design.pdf

Chapter 1

OBC Hardware documentation

1.1 Word abbreviation

ACS Attitude Control System

BHE Byte High Enable

CCL Camera Control Unit

CS Chip Select

MCU Micro Controller Unit

NMI Non Maskerable Interrupt

DCL Decoding Control Logic

I2C Interconnected Integrated Circuit

LB Lower Byte

OBC On Board Computer

OS Operating System

OTP One Time Programmable

PROM Programmable ROM

PSU Power Supply Unit

RAM Random Access Memory

ROM Read Only Memory

UB Upper byte

PCB Printed circuit Board

DMA Direct Memory Access

CDH Control Data Handling

Table 1.1: List of words.

6

OBC Hardware documentation

1.2 Determination of OBC HW functions

In order to desing the HW (hardware) of the OBC (On Board Computer), it

is vital to determine its HW functions. The OBC HW consists of a minimum

computer system; a main processor, RAM, PROM, �ash memory, I2C bus

interface and external logic to control the memory modules and the camera.

The main function of the OBC HW is to create a physical platform for the

data handling system and ACS (Attitude Control System), is also to create

an interface to the other subsystems in the satellite. The OBC hardware

should, beside being capable of handling the I2C bus, also be capable of :

1. Reading and writing to RAM (4MB).

2. Read PROM and read/write to �ash memory (256kB).

3. Addressing and decoding for selection of chips.

4. Bus arbitration on parallel bus, when grabbing data from camera.

5. Automatic reset of MCU if latchup or other single upset event has

stopped MCU.

1.3 Overview of Cubesat hardware architecture

Before explaining how the OBC works in detail, an overview of the hardware

architecture of the Cubesat is explained. A simpli�ed model can be seen in

�gure 1.1.

As it can be seen, the OBC hardware consists of the main MCU, PROM

(holding the basic program), Flash ROM (holding updated software) and

RAM (stack, picture etc.). Besides that it also contains logic to control the

memory, that is, chip selecting, timing signals etc. This is done in cooperation

with the CCL (Camera Control Logic), because the camera needs DMA

(Direct Memory Access) to RAM. The reason for this, is because data from

camera comes out in a stream, so timing and hardware DMA is required,

which is done by the CCL. This is actually not a part of the OBC, but since

it works closely together with the decoding logic, it has been implemented in

the same chips as this.

The external parts, as PSU (Power Supply Unit), Communication Unit etc.

has been connected via the I2C bus. This makes it easy for testing on a

PC later on. The communication unit, has also been connected to the main

MCU through a special communication bus. This is not explained further in

this document. For programming, both during developing phase and in the

7

OBC Hardware documentation

MCU
C161PI

PROM

Flash
memory

RAM
BanksDecoding Logic

(DCL)

Camera Control Logic
(CCL)

Payload

PSU

ACS

Comm. unit

PC

I2C

RS232

A/D bus

Com.Bus OBC

Control bus

Figure 1.1: Overview of the architecture of the hardware in Cubesat.

8

OBC Hardware documentation

end phase, a serial interface has been implemented to a PC, via the RS232

serial interface.

1.4 Choice of components

This section describes the considerations we have made when choosing com-

ponents for the on board computer. These components are the MCU, exter-

nal memory and control logic.

Since space is a rough environment we have to select components capable

of withstanding radiation bombardment, out gassing and extreme changes in

temperature. This document describes the demands for each part and how

they are met.

1.4.1 The temperature

The di�erence between cold (shade) and warm (illuminated) is very large

when not protected by the atmosphere (app. between -40 and 80Æ C). There-

fore we have to choose components capable of working in a wide temperature

range. An advantage (when in shade) is that the only way the components

get chilled is by radiation. Since heat radiation is a slow heat conductor and

the components generate heat them self we do not expect that the compo-

nents will be exposed to a rapid temperature change when moving into shade.

When illuminated the satellite will be exposed to 1300W/m2 from the sun.

We expect the temperature on the sides of the satellite that faces the sun

to be app. 80Æ C. Inside the satellite temperature changes will be consider-

ably slower, because of internal mechanical structures, but it still have to be

taken into consideration. We have therefore limited the components to those

qualifying for industrial temperatures (-40-85Æ C).

1.4.2 Power consumption

Because of the limited amount of power available (<500mW5V) to the OBC

the power consumption of each component has to be taken into consideration.

Since the power consumption, in general, follows the frequency and we only

need to run the MCU at 12,5Mhz when the picture is taken, we will decrease

the frequency of the OBC when not taking a picture. We have also considered

using 3.3V components because of the lower power consumption but we had

to give up on the idea. A system based on 3.3V components would be more

sensitivity to noise and it has shown that it is practically impossible to �nd

these components capable of industrial temperatures.

9

OBC Hardware documentation

1.4.3 Radiation

When not protected by Earths magnetic �eld the satellite will be exposed to

high level of radiation. When electronics is exposed to radiation tree things

will happen:

� Slowly the chip will degrade until �nally not working.

� Bit errors occurring when a bit �ips.

� Latch up resulting in a short circuit.

Since it is extremily expensive to buy special radiation hardened electronic

parts we have chosen to solve the radiation problem in a di�erent way. By

using code correction (e.g. Hamming) and outer protection (e.g. metal pro-

tection) we minimize the amount of problems due to radiation without the

cost of special space approved components. Further some technology are

preferable to others for example CMOS/HCMOS seems to be able to with-

stand radiation for a long period of time.

1.4.4 Size

Since we are limited in weight and volume we will try to use compact SMD

components.

1.4.5 Availability

Obtaining components with industrial speci�cation in small numbers has

turned out to be di�cult. There for we are using standard components during

the designing and development phase. When construction the engineering

model and the �ight model we are going to exchange all the components

with industrial components.

1.5 Choice of component parts.

When selecting the components it was needed to do some compromises. The

most important demands was the extended temperature ranges all parts meet

these demand. If all parts could work at a 3.3V power line the power con-

sumption would bee smaller but this was not possible to get every part com-

patible whit 3.3V. In stead of the power voltages is 5V an then the MCU

frequency is decreased and only when the picture is taken the frequency is

set to 12,5MHz. Its all most impossible to get particular radiation hardened

10

OBC Hardware documentation

components by the distributors so we have to do other things to meet the

radiation problem. There might be a problem whit erasable memory units

like EEPROM etc in radiation environment since this will be erased by time.

Therefor there must be a non erasable ROM on bored satellite. We have not

done other hardware precations to avoid radiation problem. Almost all parts

are available as SMD components so that's what we have selected.

1.5.1 MCU

The MCU will be running most of the time and it is therefore especially im-

portant to limit the power consumption here. This is done by choosing a low

power MCU with the option of saving even more power by lowering the fre-

quency. Beside low power consumption it is necessary that the MCU support

a large amount of memory and has an I2C hardware bus interface. Besides

this we would like a couple of A/D-converters (for thermal measurement e.g.)

1.5.2 RAM

It has been particularly di�cult �nding RAM with industrial speci�cations

and that is why we ended up using 8 modules of each 512kb. Since RAM

is especially sensitive to radiation we have to take special care. We are

planning to deal with this problem by protecting the RAM modules with a

metal reinforcement and implementing an error correcting code. In the end

we have decided to use standard static RAM with industrial speci�cations.

A major compromise was made here, since the found RAM consumes a lot

of power compared to all other components found. The major reason why

the clock frequency is lowered, is because of the RAM's since it consumes

55mW/MHz.

1.5.3 ROM/PROM/Flash memory

The boot software is going to be placed in a memory device capable of storing

data even if powered down. We have chosen to use �ash memory for this

task because it enables us to upload new software to the satellite. Since this

type of memory might be exposed to bit �ips due to radiation we are going

to implement the original software in a PROM. Since PROM is one time

programmable (fused) its very di�cult for it to be corrupted in space.

11

OBC Hardware documentation

1.5.4 Logic

On basis of recommendations from ESA and Terma we have decided to use

an FPGA (fused based) as programmable logic. This logic is going to ensure

RAM chip select. This has the advantage of saving power compared to using

PEEL and counters for CCL and DCL (see later in document).

1.6 Designing PCB

Like the other parts in the AAU CubeSat the print has to work in space

and therefore the material has to be taken into consideration when choosing.

As mentioned before, space is a vacuum environment where the temperature

vary between -40 and 85 Celsius degrees. Furthermore radiation will a�ect

the print board so it is not only a question to get the right material, but also

to make it radiation protected.

Before making the �nal print, it has been decided to make a prototype print

in order to verify that the electronic circuits works properly. Therefore the

prototype print is not going to ful�ll the demands for space described above.

To verify that the electronic works properly the print has to consist of only

two layers in order to measure all points in the circuit. The �nal print is

possibly going to consist of more than two layers if all the wires are going

to be on one print, which has the size of approximately 90x90mm to �t the

CubeSat.

At Aalborg University at the department of Telecommunication, they are

able make a print with two layers and a minimum width constraint of 0.3mm.

With this size it is impossible to make a PCB on a square of 90x90mm as it

has to be on the �nal print, but for the test print, this is acceptable. There-

fore the prototype is made at Aalborg University.

To make the print layout, the program Design Explorer 99 SE from Protel

is used. It has a trial period for 30 days, so the print board is �nish within

that period of time. Things like redundancy and radiation protection is im-

portant, but the size of circuit we are working with, has certain di�culties in

�tting a large print board. So there is no room for hardware redundancy on

the prototype print board and as regarding radiation protection, we use the

rules Protel has build in when making the print. Protel could make a print

board at the square size of 150x200mm.

When the circuit on the prototype print board has been tested completely, the

12

OBC Hardware documentation

�nal print is going to be made by the company GPV. They have the facility

to make a print board, which ful�ll the demands for industrial speci�cation

described above. Only a vacuum test is needed to ensure that the PCB does

not degass in space. From Design Explorer 99 SE it is possibly to make the

print-board-�les, which GPV can make print from. After GPV has made the

�nal print we hope to get Terma to mount the components on the board, so

it is ensured that it is done the right way.

1.7 Basic con�guration of the MCU

The In�neon C161PI can be con�gured in many ways, but it has been chosen

to use the following con�guration :

� Base oscillator frequency is chosen to 5MHz. This is normal operation

frequency, but while taking a picture 12,5MHz is used.

� Databus is pure 16 bit, which takes up port 0

� Addressbus is set to 20 bit, which means it can see blocks of 1Mb. How

it handles the 4Mb needed for the image is explained later.

� For uploading it has been chosen to use the ASC0 (Serial Channel 0)

as default channel. This is explained later.

� As I2C interface, it has been chosen to select Line 1 with 7 bit addressing

mode, and the MCU as master.

� Port 5 uses all its analog inputs for temperature sensors connected to

components within the OBC. This is for housekeeping, and temperature

warnings/failures etc. inside the OBC system.

Figure 1.24 in the end of this document, there is detailed block diagram

of the OBC HW, and how it is connected.

13

OBC Hardware documentation

1.8 Memory management by the MCU

Description of memory

The C161PI addresses its memory linearly, and can address up to 16MB. The

main memory of the OBC consists of several types. The two major types,

are internal and external memory.

The on chip memory consists of RAM only, which are split into two types:

1kb IRAM (Internal RAM) and 2kb XRAM (External RAM). IRAM is RAM

that lies next to the CPU, and is therefore extremely fast, and therefore it

is used as stack for the CDH. XRAM is RAM that lies on the same sillicium

chip, but has been put on the external address/databus which means that

the cpu accesses it as if it where ordinary external RAM. It is often used for

holding variables. The gain of using XRAM, is only speed, because it resides

on the same sillicium chip as the rest of the MCU.

The external memory is normal RAM, ROM and other peripherals mapped

onto the memory map.

Memory map of the system

It is chosen to store the image from the camera in RAM. Since 4Mb is needed

for holding the image, at least 8 chips must be used when each holds 512kb.

Besides RAM, the MCU also have at least 256kb of PROM for holding the

software. Beside this, it has been decided to implement extra 256kb of �ash

memory above the PROM in order to be able to update application software

later on. This gives the following memory map shown in �gure 1.2.

Due to easy implementation of the camera later on, it is chosen to use

the upper segment 8 as User RAM. The CS signals that selects individually

two segments at a time, are generated by the microcontroller. The C161PI

o�ers the opertunity to map 5 chipselects onto its memorymap. This has

the advantage that, once programmed, it becomes transparent to the user,

hence the chip selecting requires much less external hardware. Signal CS0 is

always low whenever the other signals are not set low, which means that if

an error occurs and a read or write function is performed on addressed above

0x47FFFF, an illegal bus trap will happend, which software must take care of.

1.8.1 Byte access to memory

The data bus is 16 bit wide, while the address bus is 20 bit wide. This

means that the MCU can address a whole segment directly at a time. This

also means that decoding each RAM chip is much more simple, which is

14

OBC Hardware documentation

Segment 8 (512kb)
User RAM

Segment 7 (512kb)

Segment 6 (512kb)

Segment 5 (512kb)

Segment 4 (512kb)

Segment 3 (512kb)

Segment 2 (512kb)

Segment 1 (512kb)

PROM (256kb)
0x000000

0x040000

0x080000

0x100000

0x180000

0x200000

0x280000

0x300000

0x380000

0x47FFFF

CS4

CS3

CS2

CS1

CS0

Flash memory (256kb)

0x400000

Figure 1.2: Memory map of the C161PI main MCU

15

OBC Hardware documentation

described later in this section.

Since the RAM is 16 bit accessible it can cause a lot of wasted space if byte

access is required. The chosen RAM has a possibility to address byte wise,

and also the MCU supports this method on a 16 bit data bus. The RAM has

two pins to enable upper and lower byte, and if both pins are low, a whole

word is read. These pins are called UB and LB. The MCU has a special pin

called BHE that enables the upper byte, when necessary. Together with A0,

this makes it possible to get a �exible byte access, without to much logic.

A0 enables the lower byte, and BHE enables the upper byte. This means

that words always are written on even byte addresses.

PROM and �ash memory is done nearly the same way, but since these devices

are only 8 bit, a device is selected to hold the upper byte, and another device

holds the lower byte. The result is, that for the MCU, it looks if the two

devices were one with the same capabilities as the RAM.

Since the camera returns 10 bit data, these will be stored as words in RAM.

Therefore when taking a picture, it will be necessary to enable both upper

and lower byte. This means that the logic shown in �gure 1.3 is needed to

control LB and UB on RAM.

Word
Enable

A0

BHE

LB

UB

Figure 1.3: Byte access control, including word enable from CCL.

Signal Word Enable is created from CCL (Camera Control Logic), which

is explained later. This signal, of course, enables both bytes during data

transfer.

1.8.2 Decoding system

Determination of CS window

The register that programs the chip select lines are build up like shown in

table 1.4.

The address start bit �eld, controls the upper 12 address bit, of where

the CS should be active. The lower four bits sets the length of the memory

window where the signal is active. For further information please read the

16

OBC Hardware documentation

Start address Length

15 034
Bit field

Figure 1.4: The register ADDRSL that controls CS windowing

user manual for the C161PI, where other features with this mapping methods

are explained in details.

Chip selection within CS window

Since A0 is used for determination of low byte access, the address lines from

the MCU to RAM starts from A1-A18, and for PROM/�ash memory A1-A17.

RAM has 18 bit address bus (A0-A17), which leaves 1 bit (A19) to determine

which chip is to be selected within the CS window. For both ROM types, the

chip within its CS window, is selected by A18. If, for instance, �ash memory

is to be selected, then CS0 goes low, and A18 on the address bus goes high.

These two signals leads to the following boolean equation, that selects the

RAM chip (remember that chip select on any chip is always active low)

F lashmemory = CS0 + A18 (1.1)

and for PROM

PROM = CS0 + A18 (1.2)

By inspection in a truth table, it can be shown that only an OR gate and

a XNOR gate is neede to decode. The truth table is shown in table 1.2

CS1 A18 Gate PROM CS0 Gate Flash memory

0 0 OR 0 0 XNOR 1

0 1 OR 1 0 XNOR 0

1 0 OR 1 1 XNOR 1

1 1 OR 1 1 XNOR 1

Table 1.2: Truth table for decoding address signals.

17

OBC Hardware documentation

This means that an OR gate and a XNOR gate are needed to decode the

memory map for each segment.

This is shown in �gure 1.5.

PROM
FLash

memory

CS CS

CS0

A18

CS Window

Figure 1.5: Realisation of the general decoding mechanism.

For most of the RAM chips, it works nearly the same way. Since the

camera grabbing logic has to chip select the RAM's as well, a slight change

is introduced with these chip selects. This is shown in �gure 1.6.

CS1

A19

CS
Camera seg1

CSseg1 CSseg2

CS
Camera seg2

Figure 1.6: Realisation of the decoding mechanism of the RAM circuits.

Whenever either the MCU or the CCL tries to access a RAM chip, it

brings one of the inputs low to the respective AND gate, which makes the

output go low, and therefore selects the chip. The signals CS Camera Seg

x comes directly from a decoder system within the CCL. This is explained

later.

The decoding system is implemented on a PEEL chip, and the system re-

quires 5 input lines (CS0,..,CS4,A18,A19) and 11 output lines (PROM,�ash

memory,RAM1,..RAM8).

Reading from a device is done by pulling OE low on all chips, then output

will be enabled by the chip select.

18

OBC Hardware documentation

Writing is done the same way, just with the WR signal. Writing to �ash

memory also utilizes the WR signal strobe, but in the end product, the OTP

only need writing once, and therefore a jumper will connect this line to the

PROM's write pin while programming.

Further time analysis is not performed for the MCU, since RAM and ROM

are much much faster than the MCU clock frequency, which will be 5-6MHz

(see section 1.13 for further details on this).

19

OBC Hardware documentation

1.9 Controlling the Flash memory in the OBC

The OBC must be able to �ash/burn the program itself. This can be done

in two ways. The �rst method, the boot strap programming, is done when

�ashing/burning brand new software, and is only ment to be used during

development and when programming the PROM. The advantage is that it

is easy to use and you can programme the OBC directly from a PC through

a RS232 interface. This, of course, requires extra components for voltage

adaption.

The second method is used when CDH is already running on the OBC. This

method is ment to be used, when Cubesat is in orbit and new software is

required.

1.9.1 Boot strap programming

Boot strap programming is an already build in feature in the C161PI. To

enter this mode, it requires an external pull down on P0L.4 during a reset.

This is, for simplicity done by a jumper and a resistor. Besides this, a

serial connection to a PC is done through the MCU's asynchronous channel

0 (ASC0). This channel must be connected to a MAX232 device, in order to

ensure RS232 voltage levels.

From here a program can control the programming. After reset a 32 byte

long boot strap loader is loaded into the memory of the MCU. This loader

now handles the byte writing to the �ash memory. When done, a reset can

be performed without the jumper on P0L.4, and the program will run, if

successfully �ashed/burned. A sequence diagram for inline programming is

shown in �gure 1.7

As it can bee seen from the �gure, there's a lot of things happening

automatic, which means that with a minimum of e�ort the ROM can be

programmed. For security reason a jumper can be used to wire the WE pin

on the PROM while burning the system software. In this way, it is ensured,

that reprogramming of try of reprogramming PROM (since this may cause

errors) only is done when it is intended. The WE pin, should therefore be

tied high by a resistor, when not used.

1.9.2 Software controlled programming

As a way to secure properly working software it may be needed to upload

new application software. The system will in its boot sequence look if any

application software is located in the �ash memory. If yes, the application

will be started from there, other vise it will run the standard modules from

20

OBC Hardware documentation

User initiates master reset, and holds
P0.4 low during reset(via jumper).

MCU C161PI enters Bootstrap mode
and awaits data on ASC0

PC sends a zero byte, with 1 start and
1 stop bit at the serial channel

MCU receives zero byte, and
synchronizes its baud rate generator

MCU transmits a config code

PC/User sends bootload code

MCU recieves, and puts code in spec.
boot RAMN

ot
 fi

ni
sh

ed

After finished, MCU runs bootstrap
code

Fetch code on ASC0 from PC

Flash/copy memory with word
and increas address counter

Check if finished

Acknowledge and reset MCU

Second level bootstrapping

First level bootstraping

N
ot

 fi
ni

sh
ed

Figure 1.7: Bootstrap sequence for �ashing/burning software.

21

OBC Hardware documentation

the PROM.

The software controlled reprogramming method is to run a small program

from XRAM, that moves data uploaded from ground, to the Flash memory.

This has the advantage that new program data, is protected by the already

de�ned protocols.

Recieve data from ground

Copy data to RAM

Flash memory

Wait

Inform PSU of new SW

Reset when ready

Copy flash program to XRAM

D
on

e
by

 d
riv

er

Figure 1.8: Procedure to �ash memory. Procedure is called from CDH.

Figure 1.8 shows how the external software experiences �ashing of the

memory. Receiving and copying program data is done by other, and when

ready the driver software will copy this into ROM. When done, the system

will go back in normal operation mode. During this process, the CDH will

be disabled, due to hard real time requirements from the hardware. As a

requirement from the �ash memory, no code must be executed from it, when

being �ashed. Reading from the device, and therefore running code from it,

while trying to �ash the device, is simply not possible.

1.9.3 Low level algorithm for �ash/burn ROM

Actually no extra hardware is required in order to �ash or burn the onboard

memory. The reason for this, lies in the way it is �ashed. If the R=W line

from the MCU is connected to the WE pin on the �ash memory, it can be

22

OBC Hardware documentation

written to nearly the same way as to RAM. The only di�erence, is that,

for each byte written at a random address, three codes on both the address

and databus must be written, in order to enable the �ash capability in the

�ash memory. From the software programmers view, this looks like writing

a speci�c byte to a speci�c address in that memory area, before writing the

actual byte. This sequence can be seen in �gure 1.9.

This algorithm also apply for the boot strap method, but since only 32

bytes of code is available, it may be necessary to skip the retry part, and just

reply to the PC that an error occurred. User must then try again. In table

1.3 it is shown how the command sequences are, for the M29F010B chip.

Command Adr.1 Data1 Adr.2 Data2 Adr. 3 Data3 Adr.4 Data4

Program 555 AA 2AA 55 555 A0 PA PD

Table 1.3: Command sequence for PROM. All numbers are in hex code.

PA is the program address, and PD is the program data. The only dif-

ference between the PROM and the Flash ROM lies in the address space.

When programming the PROM the addresses shown in the table is used.

When �ashing the both lower and upper byte of the memory, addresses must

be added 40000h accordingly to the memory map. The data must also be

doubled in order to �ash upper and lower device at the same time, i.e. write

0xAAAA at addr. 40555 for the �rst part.

23

OBC Hardware documentation

Fill buffer in XRAM (e.g. 64 words)
from RAM

Write Command Sequence

no

Buffer
empty?

Data
finish?

no

Inform PSU of new SW

Perform reset (by PSU)

Disable OS and
write erase commands to flash

memory

Wait

Write word to address
and increase addr. by one

Error bit
set?

Write block erase
command
sequence

Wait

Reset address
counter

Yes

No,
word OK

Yes

Figure 1.9: Low level procedure to �ash ROM.

24

OBC Hardware documentation

1.10 The Camera Control Logic (CCL)

In order to design the hardware control logic for the camera, it is important

to look at how the camera and the RAM works. A timing sequence analysis

is done in the following. Figure 1.10 shows what happens when a picture is

taken.

TRIGGER

SYNC

SOF

VCLK

Databus

Row data

trow

tint

Figure 1.10: Timing sequence of camera activity, during row transmission.

The TRIGGER pin is pulled high by the MCU (only a pulse is needed).

A synchronization pulse (SYNC) is created by the camera, when this starts

to integrate the pixels. After the �rst pixels has been integrated, data starts

to come out. A frame start signal, SOF(Start Of Frame), indicates that data

starts to come out. After each row has been transmitted a signal, VCLK

(Vertical Clock), synchronizes all external logic. During this period, no valid

data is on the data bus. During data transmission an address counter must

be implemented in order to store the data in the RAM. Other glue logic is

also required to make it possible for both MCU and CCL to access RAM.

The time trow it takes to transfer a row, can be calculated by (MCLK

(Master Clock frequency) at 12,5MHz, vcwd means width of active window

and is set to 1280 pixels). The following equations has been taken from the

datasheet of the KAC-1310 chip.

trow = (vcwd+ 44) � tMCLK (1.3)

= (1280 + 44) � 80ns (1.4)

= 106�s (1.5)

With a total of 1024 rows, a total time of 106ms is needed to transfer the

25

OBC Hardware documentation

picture to RAM. The integration time (tint) is calculated by (cint is calculated

by the length of the active window plus three, i.e. 1024 + 3)

tint = (cintdmin + 1) � trow (1.6)

= (1027 + 1) � 109�s (1.7)

= 111ms (1.8)

Hence, a total time of taking the picture, is approximately 217ms.

During row transmission, another synchronization is produced by the

camera. Figure 1.11 shows these signals. The R=W signal is the needed

signal for the RAM, in order to fetch the data on the bus.

1 2 3

MCLK

Databus
(column data)

twp tp

R/W

Figure 1.11: Timing sequence of camera activity, during column transmis-

sion.

Since data is written to RAM on rising edge of the R=W signal, it is

necessary that this signal pulses with the right timing, accordingly to the

data being written onto the data bus from the camera. The RAM chips

requires that the signal is low for at least 50ns, i.e. that twp > 50ns, this

means that the high period tp can be max. 30ns (with a MCLK at 12,5MHz).

Because of the RAM, it is required, as seen on the �gure, that the R=W signal

is pulsed between a shift on the master clock. The generation of this signal

is done within the PEEL decoding chip, and a schematic of the gate logic is

shown in �gure 1.12.

Since the R=W signal can be generated by the MCU also, it is necessary

to gate the to sources together. This is done, for simplicity, with and AND

gate in the end. If no units wants to write to any chips, both signals are held

high, and thus, the chips are set to read.

The delay and switching circuit is done, both to delay the signal, for synchro-

nization with the MCLK signal, and to enable/disable whenever the pulses

are needed/not needed. This is done by OR'ing the delayed signal with the

26

OBC Hardware documentation

HCLK

Delay 2
and swithing

Sync

WR
(MCU)

R/W

Delay 1
Q

Q
SET

CLR

S

R

Finish

VCLK

A

B C

ACC

Enable
Decoder

Word
Enable

Figure 1.12: Gate logic for creating the R=W signal.

vertical line sync (VCLK) signal and a synchronization signal, resetted by the

cameras SYNC signal. This ensures that pulses only occurs when needed.

The delay is done in order to delay the HCLK (Horizontal Synchroniza-

tion signal), so the end pulse is shortened by the AND gate at point B, to

tp < 30ns, as required in the timing analysis.

To clock the address counter a delayed signal, ACC (Address Counter Clock)

is taken from point B as shown. The total signal timing diagram for the cir-

cuit is shown in �gure 1.13.

HCLK

A

B, ACC

C
Done by

finish or VCLK signal

MCLK

tmclk

tWP tp
tcd

Figure 1.13: Timing sequence for the R=W pulse gate logic.

Depending on how fast the chosen PEEL chip is, additional or less delay

gates can be put in the di�erent functionality boxes. The expressions to

calculate the di�erent times are as follows (where td is the general propagation

delay in the PEEL, and n1,n2 is the number of delay gates)

27

OBC Hardware documentation

tp = 0; 5tmclk � n1 � td (1.9)

twp = tmclk � tp (1.10)

tcd = (n1 + n2 + 3) � td (1.11)

(1.12)

With a 15ns PEEL chip, the following can be calculated

tcd = tmclk � 0; 5tp = 80ns� 0; 5 � 30ns = 65ns (1.13)

n1 + n2 = 65ns� 3 � 15ns = 20ns (1.14)

(1.15)

This means that n1 must consist of one gate, and n2 should be non ex-

isting. With a delay of 15ns in the �rst block, the pulse width (tp) will be

23ns, which is enough to ensure a write period (twp) on 50ns.

A total delay of 40ns (tad, address delay), counter delay is to be expected

from the counter, which means that the ACC must go high about 36ns after

the clock cycles positive edge. The signal at point B, is delayed approxi-

mately 30ns (tB), which means that a new valid address is available 70ns

after clock cycle start. This timing sequence is shown in �gure 1.14.

HCLK

ACC (B)

Address
Bus

R/W

tB

tVA

tad

Figure 1.14: Timing sequence for address counter.

A it can be seen, the address then changes shortly after R=W has gone

high. Since there are no requirements from RAM about this time, except

that, R=W must go high before address change, there is no problem. To be

more precisely there are 10ns between R=W goes high, and address changes.

This should be enough to ensure proper writing. The following equations,

shows the calculations for this.

28

OBC Hardware documentation

tV A � tcd = (n1 + 1) � td + tad � (n1 + n2 + 3) � td (1.16)

= 30ns+ 40ns� 60ns (1.17)

= 10ns (1.18)

In order to create address space for 1,3Mb that is needed for holding the

image, a 21 bit counter is needed. This is clocked by the ACC pulse. The

block diagram of this is shown in �gure 1.15.

20 bit
counter

3 bit
decoder

A19,A20,A21 8 CS

ACC

CCLR

CU

Reset

Finish

Enable
decoder

OECCE

18 bit address
(A1-A18)

Figure 1.15: Blockdiagram for creating address and chip select signals.

The �rst 18 bit of the counter is used for creating the address on the

selected chip. A18, A19 and A20 is connected to the PEEL chip and is

decoded internally to create a chip select for the RAM chips. A signal �nished

is put high as soon the image has been transferred. This is used to ensure

the R=W signal stays high, and to wake the MCU up by doing an external

hardware interrupt on pin EX7IN on the MCU.

The decoder is implemented in the PEEL chip as shown in �gure 1.16.

The image takes up 1024x1280 (approximately 1.3 million) x 10 bit words,

which uses exactly 5 RAM blocks. This means that when the counter switches

to the 6th block, it will be �nished transferring data. Hence, the �nish signal

is generated by the following equation

29

OBC Hardware documentation

CS0

CS1

CS2

CS3

CS4

CS5

CS6

CS7

A18

A19

A20

Enable
decoder

CS
Camera seg0

CS
Camera seg1

CS
Camera seg2

CS
Camera seg3

CS
Camera seg4

CS
Camera seg5

CS
Camera seg6

CS
Camera seg7

Figure 1.16: Decoder for chip selecting when camera is active.

30

OBC Hardware documentation

finish = A20 + A19 + A18 (1.19)

which is easily implemented in the PEEL.

The inputs and outputs, shown in table 1.4 must be handled and created.

This can be archieved by 2 PEELs. By dividing the logic into two blocks,

this is easily done.

Inputs Outputs Usage

HCLK - Generation of RW signal

WR - Generation of RW signal

SYNC - Synchronization of RW signal

VCLK - Synchronization of RW signal

- RW Enables RAM to write state

A17,A18,A19,A20 - Chip select generation

CS0-5 - Chip select generation (From MCU)

BHE - Enables upper and lower byte

- CS0-9 Chip selects

- Finish EX07IN interrupt wake up signal to MCU

Table 1.4: Required inputs and outputs on the PEELs.

1.11 Bus arbitration while storing data in RAM

When taking a picture of Denmark, and storing it into RAM, it is necessary

to arbitrate the MCU from the parrallel bus, since data and address signals

can interfere with the writing sequence. No matter how much time it takes

to store the data, the MCU must never write to either the data or address

bus in that time. Therefore it is necessary to put the MCU in idle mode,

while writing an image. It is also vital to put both address- and databus in

a high impedance mode in order not to short circuits the ports.

This is a tricky situation, because high impedancing the MCU from the bus

removes its possibility to fetch code data from ROM, and therefore to run

software at all. However since the MCU is equipped with XRAM that lies on

the same sillicium, and is accessed the same way as external memory, a tiny

code can be executed from here and do the trick. The procedure for taking

a picture is shown in �gur 1.17.

31

OBC Hardware documentation

Start task

Copy camera code to
XRAM

and run when ready

Disable OS by disabling
GIE

High impedance
data/address bus

Activate camera

Go to idle mode

Enable data/address bus

Enable OS, by enabling
GIE

Done by CDH

Done by code

Done by code

Wait state until next
image should be taken

Done by CDH

Write image, and
generate HW interrupt

Done by hardware

Figure 1.17: Bus arbitration procedure done by software on the MCU.

32

OBC Hardware documentation

While the MCU is in arbitration mode (idle mode), the picture storing

logic and the camera has the data/address bus for itself without any inter-

vening from the MCU. When the image has been taken, a hardware interrupt

on EX7IN is created by the CCL. This awakens the MCU from idle mode.

By giving the EX7IN interruptlevel 0, it will only wake the MCU from Idle

mode. No interrupt service routine is needed.

33

OBC Hardware documentation

1.12 Hardware con�guration

When resetting or setting power to the MCU, it must be hardware con�gured

to the system. This is done by several pins on port 0 (which is also the data

bus). External resistors on that port, or other units. Table 1.5 shows which

polarity the pins have, and what con�guration this makes.

Pins Values Con�guration

P0.0 1 Not in emulation mode

P0.1 1 Not in adapt mode

P0.5-2 1,1,1,1 Standard startup sequence

P0.7-6 1,0 16 bit data bus demultiplexed mode

P0.8 1 Standard use of WR and BHE

P0.10-9 1,1 Five chip select lines are necessary

P0.12-10 1,1 Enable address lines A17, A18

P0.15-13 0,0,0 Select PLL so FCPU = FOSC � 2; 5

RD 1 Enable watch dog timer

Table 1.5: Truth table for decoding address signals.

NB! Even though the base frequency is 5MHz times 2,5 (with PLL acti-

vated, which is 13MHz), software must lower this frequency when initialising.

This is purely to save power, and still being able to run at 12,5MHz when

taking a picture. It doesn't work the other way around!

Besides the hardware boot con�guration, it is also necessary to initialize

the MCU hardware registers, so it works as supposed in this system. This

is done with a special initialization software that must be placed as the �rst

code in the PROM.

34

OBC Hardware documentation

1.13 Power budget

Because the system has a limit on how much power it can consume, a power

budget must be made. In this section the total power dissipation is deter-

mined. The clock frequency can be used as a parameter to adjust the power.

During camera activity the clock must be about 12,5MHz. Since not all

components has been chosen (the PLD or FPGA still has to be chosen) this

can in�uence in the power budget. As a starting point, data sheet for a

PEEL 22CV10A (15ns) has been chosen. With this in mind, the following

components, shown in table 1.6 is to be used.

Component Name Power consumption

1xRAM TC554161AFT-70 1x55mW/MHz (active)

7xRAM TC554161AFT-70 7x100�A (inactive)

2xROM M29F010B 2x4mW/MHz* (active)

2xROM M29F010B 2x0,325mW (inactive)

2xROM M29F010B 2x100mW (Flash)

2xPLD PEEL 22CV10A 2x75mW

1xMCU C161PI 10mW/MHz

2xCounter HC4020/24 0,8mW

1xCamera KAC-1310 250mW

Table 1.6: Components accounted for in the OBC hardware.

*Note: This number has been derived with the assumption, that the power

dissipated for this circuit is linear dependent of the frequency, as the other

devices are.

It should also be noted that these numbers may vary with the tempera-

ture, and that these are based on typical values for the components. Based

on these �gures, it is possible to sketch a power graph, based on the clock

frequency of the system. Since the components follow the main MCU's clock

frequency, this is the only parameter to control power consumption. This is

also software controllable, which makes it easy to save power, even during

�ight. Figure 1.18 shows the power consumption in two situations, namely

in normal mode, and when �ashing new software into �ash memory.

With a simple calculation, by adding the power from active components

in camera mode, it can be shown from table 1.6 that the power consumed in

this mode is 1084mW. Since this mode only lasts for approximately 200ms

(see section 1.10 in this document) this should not be a problem for the

batteries to supply.

35

OBC Hardware documentation

0 5 10 15 20 25
200

400

600

800

1000

1200

1400

1600

1800

2000

Frequency [MHz]

P
ow

er
 c

on
su

m
pt

io
n

[m
W

]

Flash Normal

Figure 1.18: Power graph of OBC hardware in two situations.

36

OBC Hardware documentation

1.14 Weight budget

A weight budget must be setup, in order to determine the �nal weight of the

OBC hardware.

This will come as soon we know exactly how the HW is going to be.

37

OBC Hardware documentation

1.15 Physical connections of the C161PI

This section describes how the pins will be connected on the C161PI. Table

1.7 shows this.

Pin Name Con Note (Alt.func)

1-2 P5.2-3 NC Analog Signals

3 T4EUD NC -

4 T2EUD NC -

5 Vss GND -

6 XTAL1 Crystal See manual for con.

7 XTAL2 Crystal -

8 Vdd +5V -

9-16 P3.0-7 Par.Data Bus to

Comm. unit

17 P3.8 NC MRST

18 P3.9 NC MTSR

19 P3.10 RS232 Transmit TxD0 (ASC0)

20 P3.11 RS232 Recieve RxD0 (ASC0)

21 P3.12 NC BHE

22 P3.13 NC SCLK

23 P3.15 Camera Clock in fcpu =

12,5MHz/5MHz

24 Vss GND -

25 Vdd +5V -

26 P4.0 Address Bus A16

27 P4.1 Address Bus A17

28 P4.2 Address Bus A18

29 P4.3 Address Bus A19

30 P4.4 NC A20

31 P4.5 Write F.ROM1 -

32 P4.6 Write F.ROM2 -

33 RD OE Con. on all chips

34 WR Peel (WRMCU) -

35 READY NC Ready from Ext.Mem.

38

OBC Hardware documentation

Pin Name Con Note (Alt.func)

36 ALE NC Used only in muxed

bus mode, or as sync

37 EA GND External Access

38 Vss GND -

39 Vdd +5V -

40-47 P0L.0-P0.L7 Data bus D0-D7

48 Vss GND -

49 Vdd +5V -

50-57 P0H.0-P0H.7 Data bus D8-D15

58 P1L0 Address 0, RAM

(LB), ROM (LB)

-

59-65 P1L.1-P1L.7 Address Bus A1-A7

66 Vss GND -

67 Vdd +5V -

68-75 P1H.0-P1H.7 A8-A15 -

76 Vss GND -

77 Vdd +5V -

78 RSTIN PSU HW Reset, tied high

by resistor

79 RSTOUT NC Sync. Reset

80 NMI NC Non Maskable Inter-

rupt

81-85 P6.0-4 PEEL (CSx) CSx lines

86 P6.5 SDA1 I2C data line 1

87 P6.6 SCL1 I2C clock line 1

88 P6.7 NC SDA2

89 P2.8 Comm. Interrupt EX0IN

90-95 P2.9-14 Comm. unit Comm.Control Bus

(CCB)

96 P2.15 PEEL (�nish) Finish interrupt from

(CCL)

97 VAref +5V ADC reference voltage

98 VaGND GND ADC ground

99-100 P5.0-1 Temperature sensors Analog Signals

Table 1.7: Pin connections on the C161PI microcontroller.

39

O
B
C
H
a
r
d
w
a
r
e
d
o
c
u
m
e
n
ta
tio

n

1
.1
6

S
y
ste

m
B
lo
ck

D
ia
g
ra
m

C161PI MCU Payload

PROM
128kb

Flash memory
128kb

RAM Bank
4Mb

Address bus

P0

P1+
P4.0-3

Decoding
logic

I2C
Interface

I2C
Interface 1

P6.5-6

I2C bus

Comm.
unit

PIC16xx

Power
unit

PIC16

ACS
Sensor/
Actuator
PIC16

Master
Reset

WE

Camera
Control

logic
(CCL)

Sync
Signals

Analog
interface

(Temp. sensors for OBC)

Chip
Select

2

2

I2
C

 b
us Data Bus

16

21

RSTIN

4

P3.10-11
ASC0

Control Bus
10

CS
lines

8 CS R/W

P5.0-3

XTAL1

XTAL2

P3.15 Fcpu

EA

P6.0-4
+ others

Varef
VDD

Vagnd
VSS

+5V

 EX7IN P2.15

Clk. IN

HCLK

RD

8
Parallel bus interface

P2.1-8
P3.0-7

J1

P0L.4

MAX232
Tx0Rx0

RS232
Serial

interface

PC

Serial port

Par. port
For test purposes

HW Interface

WE

U
B

,L
B

F
ig
u
re

1
.1
9
:
S
tru

ctu
re

o
f
O
B
C
h
a
rd
w
a
re.

4
0

OBC Hardware documentation

1.17 Diagrams of the OBC

The OBC hardware diagrams, has been divided into four blocks, each con-

tains details on how the OBC on AAU Cubesat works on hardware level.

The four blocks, and its bus connections, are shown in �gure 1.20.

DCL
CCL

Counter

RAM
Banks

C161PI
main MCU

PROM
Flash memory

D
ata bus

I2C
 bus

C
ontrol bus A

ddress bus

C
ontrol B

us

C
am

era C
ontrol

Figure 1.20: Dividing of OBC hardware diagrams.

The following tables contains valuable information when reading the di-

agrams.

Line nr. Value Meaning

0 IRQ Interrupt request line from modem.

1 A0 Low bit address for modem.

2 A1 High address for modem.

3 PTT Push to Talk

4 CE Chip Enable for modem.

5 RD Read byte.

6 WR Write byte.

Table 1.8: Communication Control Bus (CCB[0..6]).

41

OBC Hardware documentation

Line nr. Value Meaning

0 CS0 Chip Select 0

1 CS1 Chip Select 1

2 CS2 Chip Select 2

3 CS3 Chip Select 3

4 CS4 Chip Select 4

5 RD Read enable

6 R=W Write enable

7 BHE Byte High Enable

Table 1.9: Control bus (CB[0..7]).

Line nr. Value Meaning

0 PROM � LB PROM Low Byte enable

1 PROM � UB PROM High Byte enable

2 FROM � LB Flash ROM Low Byte enable

3 FROM � UB Flash ROM High Byte enable

4 RAM1 RAM 1 enable

5 RAM2 RAM 2 enable

6 RAM3 RAM 3 enable

7 RAM4 RAM 4 enable

8 RAM5 RAM 5 enable

9 RAM6 RAM 6 enable

10 RAM7 RAM 7 enable

11 RAM8 RAM 8 enable

12 RAM � UB RAM Upper byte enable

13 RAM � LB RAM Lower byte enable

14 R=W Write enable strobe

15 RD Read enable strobe

Table 1.10: Control bus generated by decoding logic (DCL) (CS[0..15]).

42

OBC Hardware documentation

PEEL 1 in PEEL 1 out PEEL 2 in PEEL 2 out

I2=A18 O17 = RAM1 I2=HCLK O17 = PROM � LB

I3=A19 O18 = RAM2 I3=SYNC O18 = PROM � UB

I4=A20 O19 = RAM3 I4=Finish O19 = FROM � LB

I5=CS1 O20 = RAM4 I5=VCLK O20 = FROM � UB

I6=CS2 O21 = RAM5 I6=HCLK O21 = RAM � LB

I7=CS3 O23 = RAM6 I7 = CS0 O23 = RAM � UB

I9=CS4 O24 = RAM7 I9=A18 O24 = RW

I10=Enable Decoder O25 = RAM8 I10=A0 O25=Enable Decoder

O26=Finish I11=BHE

Table 1.11: PEEL decoding logic I/O con�guration pin assignments.

43

OBC Hardware documentation

1.17.1 Main MCU connections

1
2

3
4

5
6

ABCD

6
5

4
3

2
1

D C B A

T
itl

e

N
um

be
r

R
ev

is
io

n
S

iz
e

B

D
at

e:
13

-D
ec

-2
00

1
S

he
et

of
F

ile
:

H
:\P

7\
pr

oj
ek

t\F
in

al
G

N
D

\0
1g

r7
32

_v
1.

dd
b

D
ra

w
n

B
y:

P
5.

2/
A

N
2

1

P
1L

.2
/A

2
60

P
1L

.3
/A

3
61

P
1L

.4
/A

4
62

P
1L

.5
/A

5
63

P
1L

.6
/A

6
64

P
1L

.7
/A

7
65

V
S

S
66

V
D

D
67

P
1H

.0
/A

8
68

P
1H

.1
/A

9
69

P
1H

.2
/A

10
70

P
1H

.3
/A

11
71

P
1H

.4
/A

12
72

P
1H

.5
/A

13
73

P
1H

.6
/A

14
74

P
1H

.7
/A

15
75

V
S

S
76

V
D

D
77

R
S

T
IN

78
R

S
T

O
U

T
79

N
M

I
80

P6.0/CS0
81 P6.1/CS1
82 P6.2/CS2
83 P6.3/CS3
84 P6.4/CS4
85 P6.5/SDA1
86 P6.6/SCL1
87 P6.7/SDA2
88 P2.8/EX0IN
89 P2.9/EX1IN
90 P2.10/EX2IN
91 P2.11/EX3IN
92 P2.12/EX4IN
93 P2.13/EX5IN
94 P2.14/EX6IN
95 P2.15/EX7IN
96 V_(AREF)
97 V_(AGND)
98 P5.0/AN0
99 P5.1/AN1
100

P
5.

3/
A

N
3

2

P
5.

14
/T

4E
U

D
3

P
5.

15
/T

2E
U

D
4

V
S

S
5

X
T

A
L1

6

X
T

A
L2

7

V
D

D
8

P
3.

0/
S

C
L0

9

P
3.

1/
S

D
A

0
10

P
3.

2/
C

A
P

IN
11

P
3.

3/
T

3O
U

T
12

P
3.

5/
T

3E
U

D
13

P
3.

5/
T

4I
N

14

P
3.

6/
T

3I
N

15

P
3.

7/
T

2I
N

16

P
3.

8/
M

R
S

T
17

P
3.

9/
M

T
S

R
18

P
3.

10
/T

xD
0

19

P
3.

11
/R

xD
0

20

P
3.

12
/B

H
E

/W
R

H
21

P
3.

13
/S

C
LK

22

P
3.

15
/C

LK
O

U
T

/F
O

U
T

23

V
S

S
24

V
D

D
25

P
4.

0/
A

16
26

P
4.

1/
A

17
27

P
4.

2/
A

18
28

P
4.

3/
A

19
29

P
4.

4/
A

20
30

P4.5/A21
31

P4.6/A22
32

RD
33

WR/WRL
34

READY
35

ALE
36

EA
37

VSS
38

VDD
39

P0L.0/AD0
40

P0L.1/AD1
41

P0L.2/AD2
42

P0L.3/AD3
43

P0L.4/AD4
44

P0L.5/AD5
45

P0L.6/AD6
46

P0L.7/AD7
47

VSS
48

VDD
49

P0H.0/AD8
50

P
0H

.1
/A

D
9

51
P

0H
.2

/A
D

10
52

P
0H

.3
/A

D
11

53
P

0H
.4

/A
D

12
54

P
0H

.5
/A

D
13

55
P

0H
.6

/A
D

14
56

P
0H

.7
/A

D
15

57
P

1L
.0

/A
0

58
P

1L
.1

/A
1

59

C
16

1P
I

U
28

S
A

B
C

16
1P

I

Y
2

5M
H

z

C
5

30
pF

C
6

30
pF

D
[0

..
15

]

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

A
19

R
31

15
k

R
32

15
k

R
33

15
k

R
34

15
k

1 2

B
oo

ts
tr

ap
2

JU
M

P
E

R

V
C

C

R
35

15
k

R
36

15
k

R
37

15
k

D13

D14

D15

D0
D1
D2
D3
D4
D5
D6
D7

D8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

R
41

10
0k

1
2
3

I2 C
O

N
3

C
B

D
[0

..
7]

123

A
S

C
2

C
O

N
3

1 2

R
es

et
2

C
O

N
2

C
C

B
[0

..
6]

R
26

10
0k

R
27

10
0k

R
28

10
0k

V
C

C

CCB4

CCB5

CCB6

12345678910111213141516

C
om

B
U

S
2

C
O

N
16

A
0

C
B

[0
..

7]

A
[0

..
21

]

123456

A
na

lo
g2

C
O

N
6

V
C

C

R
42

10
0k

R
43

10
0k

V
D

D

I2
C

S
C

L
I2

C
S

D
A

O
B

C
m

ai
n

M
C

U
co

nn
ec

tio
n

T
rig

ge
r

C
C

E
C

C
LR

M
C

LK

EX7IN

CB0
CB1
CB2
CB3
CB4

CB5
CB6

C
B

7

V
D

D

V
D

D

V
D

D

V
D

D

V
D

D

D2

D3

D4

D5

R
38

15
k

D6

12

P
ow

er
2

C
O

N
2

C
8

1u
F

V
D

D
5V

C
7

1u
F

R
29

54
k

V
D

D

R
39

15
k

R
40

15
k

D11

D12

D
[0

..
15

]

A
[0

..
21

]

C
B

[0
..

7]

A
N

0
A

N
1

A
N

2
A

N
3

CCB0
CCB1
CCB2
CCB3
CCB4
CCB5
CCB6

C
C

B
0

C
C

B
1

C
C

B
2

C
C

B
3

C
C

B
4

C
C

B
5

C
C

B
6

C
B

D
0

C
B

D
1

C
B

D
2

C
B

D
3

C
B

D
4

C
B

D
5

C
B

D
6

C
B

D
7

C
B

D
0

C
B

D
1

C
B

D
2

C
B

D
3

C
B

D
4

C
B

D
5

C
B

D
6

C
B

D
7

R
30

10
0k

1
2

B
oo

tp
in

s
C

O
N

2

Figure 1.21: Connection of the MCU.

44

OBC Hardware documentation

1.17.2 RAM banks

1
2

3
4

5
6

ABCD

6
5

4
3

2
1

D C B A

Ti
tle

N
um

be
r

R
ev

is
io

n
S

iz
e

B

D
at

e:
18

-D
ec

-2
00

1
S

he
et

 o

f
Fi

le
:

H
:\P

7\p
ro

je
kt

\F
in

al
G

N
D

\0
1g

r7
32

_v
1.

dd
b

D
ra

w
n

B
y:

N
C

1

A
1

4
A

0
5

D
Q

15
6

D
Q

14
7

V
D

D
8

G
N

D
9

D
Q

13
10

D
Q

12
11

U
B

12
C

E
13

O
P

14

R
/W

15

D
Q

11
16

D
Q

10
17

G
N

D
18

V
D

D
19

D
Q

9
20

D
Q

8
21

N
C

22

A
17

23
A

16
24

A
15

25
A

14
26

A
13

27

N
C

28

A
12

29
A

11
30

A
10

31
A

9
32

A
8

33
D

Q
7

34
D

Q
6

35

V
D

D
36

G
N

D
37

D
Q

5
38

D
Q

4
39

N
C

40

O
P

41
O

E
42

LB
43

D
Q

3
44

D
Q

2
45

G
N

D
46

V
D

D
47

D
Q

1
48

D
Q

0
49

N
C

50

A
7

51
A

6
52

A
5

53
A

4
54

A
2

3

A
3

2

U
15

T
C

55
41

61
F

T
L-

85
L

N
C

1

A
1

4
A

0
5

D
Q

15
6

D
Q

14
7

V
D

D
8

G
N

D
9

D
Q

13
10

D
Q

12
11

U
B

12
C

E
13

O
P

14

R
/W

15

D
Q

11
16

D
Q

10
17

G
N

D
18

V
D

D
19

D
Q

9
20

D
Q

8
21

N
C

22

A
17

23
A

16
24

A
15

25
A

14
26

A
13

27

N
C

28

A
12

29
A

11
30

A
10

31
A

9
32

A
8

33
D

Q
7

34
D

Q
6

35

V
D

D
36

G
N

D
37

D
Q

5
38

D
Q

4
39

N
C

40

O
P

41
O

E
42

LB
43

D
Q

3
44

D
Q

2
45

G
N

D
46

V
D

D
47

D
Q

1
48

D
Q

0
49

N
C

50

A
7

51
A

6
52

A
5

53
A

4
54

A
2

3

A
3

2

U
16

T
C

55
41

61
F

T
L-

85
L

N
C

1

A
1

4
A

0
5

D
Q

15
6

D
Q

14
7

V
D

D
8

G
N

D
9

D
Q

13
10

D
Q

12
11

U
B

12
C

E
13

O
P

14

R
/W

15

D
Q

11
16

D
Q

10
17

G
N

D
18

V
D

D
19

D
Q

9
20

D
Q

8
21

N
C

22

A
17

23
A

16
24

A
15

25
A

14
26

A
13

27

N
C

28

A
12

29
A

11
30

A
10

31
A

9
32

A
8

33
D

Q
7

34
D

Q
6

35

V
D

D
36

G
N

D
37

D
Q

5
38

D
Q

4
39

N
C

40

O
P

41
O

E
42

LB
43

D
Q

3
44

D
Q

2
45

G
N

D
46

V
D

D
47

D
Q

1
48

D
Q

0
49

N
C

50

A
7

51
A

6
52

A
5

53
A

4
54

A
2

3

A
3

2

U
19

T
C

55
41

61
F

T
L-

85
L

N
C

1

A
1

4
A

0
5

D
Q

15
6

D
Q

14
7

V
D

D
8

G
N

D
9

D
Q

13
10

D
Q

12
11

U
B

12
C

E
13

O
P

14

R
/W

15

D
Q

11
16

D
Q

10
17

G
N

D
18

V
D

D
19

D
Q

9
20

D
Q

8
21

N
C

22

A
17

23
A

16
24

A
15

25
A

14
26

A
13

27

N
C

28

A
12

29
A

11
30

A
10

31
A

9
32

A
8

33
D

Q
7

34
D

Q
6

35

V
D

D
36

G
N

D
37

D
Q

5
38

D
Q

4
39

N
C

40

O
P

41
O

E
42

LB
43

D
Q

3
44

D
Q

2
45

G
N

D
46

V
D

D
47

D
Q

1
48

D
Q

0
49

N
C

50

A
7

51
A

6
52

A
5

53
A

4
54

A
2

3

A
3

2

U
20

T
C

55
41

61
F

T
L-

85
L

N
C

1

A
1

4
A

0
5

D
Q

15
6

D
Q

14
7

V
D

D
8

G
N

D
9

D
Q

13
10

D
Q

12
11

U
B

12
C

E
13

O
P

14

R
/W

15

D
Q

11
16

D
Q

10
17

G
N

D
18

V
D

D
19

D
Q

9
20

D
Q

8
21

N
C

22

A
17

23
A

16
24

A
15

25
A

14
26

A
13

27

N
C

28

A
12

29
A

11
30

A
10

31
A

9
32

A
8

33
D

Q
7

34
D

Q
6

35

V
D

D
36

G
N

D
37

D
Q

5
38

D
Q

4
39

N
C

40

O
P

41
O

E
42

LB
43

D
Q

3
44

D
Q

2
45

G
N

D
46

V
D

D
47

D
Q

1
48

D
Q

0
49

N
C

50

A
7

51
A

6
52

A
5

53
A

4
54

A
2

3

A
3

2

U
21

T
C

55
41

61
F

T
L-

85
L

N
C

1

A
1

4
A

0
5

D
Q

15
6

D
Q

14
7

V
D

D
8

G
N

D
9

D
Q

13
10

D
Q

12
11

U
B

12
C

E
13

O
P

14

R
/W

15

D
Q

11
16

D
Q

10
17

G
N

D
18

V
D

D
19

D
Q

9
20

D
Q

8
21

N
C

22

A
17

23
A

16
24

A
15

25
A

14
26

A
13

27

N
C

28

A
12

29
A

11
30

A
10

31
A

9
32

A
8

33
D

Q
7

34
D

Q
6

35

V
D

D
36

G
N

D
37

D
Q

5
38

D
Q

4
39

N
C

40

O
P

41
O

E
42

LB
43

D
Q

3
44

D
Q

2
45

G
N

D
46

V
D

D
47

D
Q

1
48

D
Q

0
49

N
C

50

A
7

51
A

6
52

A
5

53
A

4
54

A
2

3

A
3

2

U
17

T
C

55
41

61
F

T
L-

85
L

N
C

1

A
1

4
A

0
5

D
Q

15
6

D
Q

14
7

V
D

D
8

G
N

D
9

D
Q

13
10

D
Q

12
11

U
B

12
C

E
13

O
P

14

R
/W

15

D
Q

11
16

D
Q

10
17

G
N

D
18

V
D

D
19

D
Q

9
20

D
Q

8
21

N
C

22

A
17

23
A

16
24

A
15

25
A

14
26

A
13

27

N
C

28

A
12

29
A

11
30

A
10

31
A

9
32

A
8

33
D

Q
7

34
D

Q
6

35

V
D

D
36

G
N

D
37

D
Q

5
38

D
Q

4
39

N
C

40

O
P

41
O

E
42

LB
43

D
Q

3
44

D
Q

2
45

G
N

D
46

V
D

D
47

D
Q

1
48

D
Q

0
49

N
C

50

A
7

51
A

6
52

A
5

53
A

4
54

A
2

3

A
3

2

U
18

T
C

55
41

61
F

T
L-

85
L

N
C

1

A
1

4
A

0
5

D
Q

15
6

D
Q

14
7

V
D

D
8

G
N

D
9

D
Q

13
10

D
Q

12
11

U
B

12
C

E
13

O
P

14

R
/W

15

D
Q

11
16

D
Q

10
17

G
N

D
18

V
D

D
19

D
Q

9
20

D
Q

8
21

N
C

22

A
17

23
A

16
24

A
15

25
A

14
26

A
13

27

N
C

28

A
12

29
A

11
30

A
10

31
A

9
32

A
8

33
D

Q
7

34
D

Q
6

35

V
D

D
36

G
N

D
37

D
Q

5
38

D
Q

4
39

N
C

40

O
P

41
O

E
42

LB
43

D
Q

3
44

D
Q

2
45

G
N

D
46

V
D

D
47

D
Q

1
48

D
Q

0
49

N
C

50

A
7

51
A

6
52

A
5

53
A

4
54

A
2

3

A
3

2

U
22

T
C

55
41

61
F

T
L-

85
L

A
[0

..2
1]

C
S

[0
..1

5]

D
[0

..1
5]

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

V
D

D
V

D
D

V
D

D
V

D
D

V
D

D
V

D
D

V
D

D
V

D
D

C
S

4
C

S
12

C
S

13
C

S
14

C
S

15

C
S

5
C

S
12

C
S

13
C

S
14

C
S

15

C
S

6
C

S
12

C
S

13
C

S
14

C
S

15

C
S

7
C

S
12

C
S

13
C

S
14

C
S

15

C
S

8
C

S
12

C
S

13
C

S
14

C
S

15

C
S

9
C

S
12

C
S

13
C

S
14

C
S

15

C
S

10
C

S
12

C
S

13
C

S
14

C
S

15

C
S

11
C

S
12

C
S

13
C

S
14

C
S

15

M
em

or
y

ba
nk

s
1-

8

D
[0

..1
5]

C
S

[0
..1

5]

A
[0

..2
1]

Figure 1.22: RAM banks.

45

OBC Hardware documentation

1.17.3 ROM banks

1
2

3
4

5
6

ABCD

6
5

4
3

2
1

D C B A

Ti
tle

N
um

be
r

R
ev

is
io

n
S

iz
e

B

D
at

e:
18

-D
ec

-2
00

1
S

he
et

 o

f
Fi

le
:

H
:\P

7\
pr

oj
ek

t\F
in

al
G

N
D

\0
1g

r7
32

_v
1.

dd
b

D
ra

w
n

B
y:

A
0

20

A
1

19

A
2

18

A
3

17

A
4

16

A
5

15

A
6

14

A
7

13

A
8

3

A
9

2

A
10

31

A
11

1

A
12

12

A
13

4

A
14

5

A
15

11

A
16

10

D
0

21

D
1

22

D
2

23

D
3

25

D
4

26

D
5

27

D
6

28

D
7

29

E
30

O
E

32

W
7

V
C

C
8

V
S

S
24

N
C

6

R
22

M
29

F
01

0B

A
0

20

A
1

19

A
2

18

A
3

17

A
4

16

A
5

15

A
6

14

A
7

13

A
8

3

A
9

2

A
10

31

A
11

1

A
12

12

A
13

4

A
14

5

A
15

11

A
16

10

D
0

21

D
1

22

D
2

23

D
3

25

D
4

26

D
5

27

D
6

28

D
7

29

E
30

O
E

32

W
7

V
C

C
8

V
S

S
24

N
C

6

R
24

M
29

F
01

0B

A
0

20

A
1

19

A
2

18

A
3

17

A
4

16

A
5

15

A
6

14

A
7

13

A
8

3

A
9

2

A
10

31

A
11

1

A
12

12

A
13

4

A
14

5

A
15

11

A
16

10

D
0

21

D
1

22

D
2

23

D
3

25

D
4

26

D
5

27

D
6

28

D
7

29

E
30

O
E

32

W
7

V
C

C
8

V
S

S
24

N
C

6

R
23

M
29

F
01

0B

A
0

20

A
1

19

A
2

18

A
3

17

A
4

16

A
5

15

A
6

14

A
7

13

A
8

3

A
9

2

A
10

31

A
11

1

A
12

12

A
13

4

A
14

5

A
15

11

A
16

10

D
0

21

D
1

22

D
2

23

D
3

25

D
4

26

D
5

27

D
6

28

D
7

29

E
30

O
E

32

W
7

V
C

C
8

V
S

S
24

N
C

6

R
25

M
29

F
01

0B

A
[0

..2
1]

D
[0

..1
5]

C
S

[0
..1

5]

U
pp

er
B

yt
e

U
pp

er
B

yt
e

Lo
w

er
B

yt
e

Lo
w

er
B

yt
e

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

C
S

0
C

S
15

C
S

14

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

C
S

1
C

S
15

C
S

14

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7 C

S
2

C
S

14
C

S
15

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

C
S

3

C
S

14
C

S
15

V
D

D
V

D
D

V
D

D
V

D
D

R
O

M
 B

an
ks

 1
-4

A
[0

..2
1]

D
[0

..1
5]

C
S

[0
..1

5]

Figure 1.23: ROM banks.

46

OBC Hardware documentation

1.17.4 DCL, CCL, counter etc.

1
2

3
4

5
6

ABCD

6
5

4
3

2
1

D C B A

Ti
tle

N
um

be
r

R
ev

is
io

n
S

iz
e

B

D
at

e:
18

-D
ec

-2
00

1
S

he
et

 o

f
Fi

le
:

H
:\P

7\p
ro

je
kt

\F
in

al
G

N
D

\0
1g

r7
32

_v
1.

dd
b

D
ra

w
n

B
y:

A
[0

..2
1]

C
B

[0
..7

]

HCLK
VCLK

SYNC

I2CSCL
I2CSDA

Trigger

Q
1

1

Q
2

2

Q
3

3

Q
4

4

Q
5

5

Q
6

6

Q
7

7

Q
0

15

V
S

S
8

V
C

C
16

O
E

14
R

C
LK

13
C

C
K

E
N

12
C

C
LK

11
C

C
LR

10
R

C
O

9
U

23

H
C

59
0A

Q
1

1

Q
2

2

Q
3

3

Q
4

4

Q
5

5

Q
6

6

Q
7

7

Q
0

15

V
S

S
8

V
C

C
16

O
E

14
R

C
LK

13
C

C
K

E
N

12
C

C
LK

11
C

C
LR

10
R

C
O

9
U

24

H
C

59
0A

Q
1

1

Q
2

2

Q
3

3

Q
4

4

Q
5

5

Q
6

6

Q
7

7

Q
0

15

V
S

S
8

V
C

C
16

O
E

14
R

C
LK

13
C

C
K

E
N

12
C

C
LK

11
C

C
LR

10
R

C
O

9
U

25

H
C

59
0A

C
C

E

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

A
19

A
20

A
21

C
C

LR

V
D

D

N
C

1

I/C
LK

2

I
3

I
4

I
5

I
6

I
7

N
C

8

I
9

I
10

I
11

I
12

I
13

V
S

S
14

N
C

15
I

16
I/O

17
I/O

18
I/O

19
I/O

20
I/O

21
N

C
22

I/O
23

I/O
24

I/O
25

I/O
26

I/O
27

V
C

C
28

U
26

P
E

E
L2

2C
V

10
A

N
C

1

I/C
LK

2

I
3

I
4

I
5

I
6

I
7

N
C

8

I
9

I
10

I
11

I
12

I
13

V
S

S
14

N
C

15
I

16
I/O

17
I/O

18
I/O

19
I/O

20
I/O

21
N

C
22

I/O
23

I/O
24

I/O
25

I/O
26

I/O
27

V
C

C
28

U
27

P
E

E
L2

2C
V

10
A

A
19

A
20

A
21

C
B

1
C

B
2

C
B

3

C
B

4

C
S

[0
..1

5]

C
S

4
C

S
5

C
S

6
C

S
7

C
S

8

C
S

9
C

S
10

C
S

11

Fi
ni

sh

E
n.

D
ec

.

C
B

6
C

B
0

A
18

A
0

C
B

7
C

S
0

C
S

1
C

S
2

C
S

3
C

S
12

C
S

13
C

S
14

C
B

5
C

S
15

V
D

D

V
D

D

MCLK

Fi
ni

sh

D
ec

od
in

g
an

d
C

C
L

lo
gi

c

C
S

[0
..1

5]
C

B
[0

..7
]

A
[0

..2
1]

D
[0

..1
5]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

C
am

er
aC

on
C

O
N

34

D8
D9
D10
D11

D12
D13
D14
D15

D16
D17

V
D

D
SensRstV

D
D

CamEPROM

Figure 1.24: DeCoding Logic, Camera Control Logic, counter, etc.

47

Cubesat Internal I2C-Bus

Description: The purpose of this document is to describe the internal bus

on the Cubesat. The internal bus has been chosen to be the I2C-bus �Inter-

connected Integrated Circuit�. The document will describe the purpose of

the I2C and the design of a suitable Protocol for the data link layer.

Responsible group: pro 732, 01gr732@control.auc.dk

Date: 19.12.01

Rev.: 1

File name: OBC_design.pdf

Path: http://www.cubesat.auc.dk/dokumenter/OBC_design.pdf

Literature:

http://www-us.semiconductors.philips.com/i2c/facts/

Chapter 2

Cubesat Internal I2C-Bus

2.1 I2C characteristic

In order to obtain communication between the di�erent subsystems on the

AAU cubesat, the Philips I2C bus has been selected. I2C or Interconnected

Integrated Circuit was developed by Philips in 1992 it has now become the

world standard, and is currently implemented in over 1000 di�erent ICs.

Here are some of the features of the I2C-bus:

� Only two bus lines are required; a serial dataline (SAD) and a serial

clock line (SCL).

� Each device connected to the bus is software addressable by a unique

address and simple master/slave relationships exist at all times; mas-

ters can operate as master-transmitters or as master-receivers.

� It s a true multi-master bus including collision detection and arbitra-

tion to prevent data corruption if two or more masters simultaneously

initiate data transfer.

� Serial 8-bit oriented bi-directional data transfers can be made at up to

100 kbit/s in the Standard-mode, up to 400 kbit/s in the Fast-mode,

49

Cubesat Internal I2C-Bus

or up to 3.4 Mbit/s in the High-speed mode.

� On-chip �ltering rejects spikes on the bus data line to preserve data

integrity.

� Extremely low current consumption.

� High noise immunity.

� Wide supply voltage range.

� Wide operating temperature range.

The I2C-bus supports any IC fabrication process (NMOS, CMOS, bipolar).

Two wires, serial data (SDA) and serial clock (SCL), carry information be-

tween the devices connected to the bus. Each device is recognized by a unique

address (whether it's a microcontroller, LCD driver, memory or keyboard in-

terface) and can operate as either a transmitter or receiver, depending on the

function of the device. Obviously a LCD driver is only a receiver, whereas

a memory can both receive and transmit data. In addition to transmitters

and receivers, devices can also be considered as masters or slaves when per-

forming data transfers (see Table 2.1). A master is the device which initiates

a data transfer on the bus and generates the clock signals to permit that

transfer. At that time any device addressed is considered a slave.

The I2C-bus is a multi-master bus. This means that more than one de-

vice capable of controlling the bus can be connected to it. As masters are

usually micro-controllers, let s consider the case of a data transfer between

two microcontrollers connected to the I2C-bus (see Fig.2.1).

50

Cubesat Internal I2C-Bus

Term DESCRIPTION

Transmitter The device which sends data to the bus

Receiver The device which receives data from the bus

Master The device which initiates a transfer, generates clock

signal and terminates transfer.

Slave The device addressed by a master

Multi-master More than one master can attempt to control the bus at

the same time without corrupting the message

Arbitration Procedure to ensure that, if more than one master simul-

taneously tries to control the bus, only one is allowed to

do so, and the winning message is not corrupted

Synchronization Procedure to synchronize the clock signals of two or

more devices

Table 2.1: De�nition of I2C-Bus terminology.

Databus

RAM/ROM

Com. databus C161PI

Microcontrtoller

SDA

SCL

Unit

OSSS−com

COM

ACS PSU

ONBOARD
CAMERA

DEVITECH

External

PAYLOADOBC

PC

CUBESAT BUS structure

Figure 2.1: I2C-Bus structure.

If two or more masters try to put information onto the bus, the �rst to pro-

duce a �1� when the other produces a zero will lose the arbitration. The

clock signals during arbitration are a synchronized combination of the clocks

generated by the masters using the wired-AND connection to the SCL line.

Generation of clock signals on the I2C-bus is always the responsibility of

master devices; each master generates its own clock signals when transfer-

51

Cubesat Internal I2C-Bus

ring data on the bus. Bus clock signals from a master can only be altered

when they are stretched by a slow-slave device holding-down the clock line,

or by another master when arbitration occurs.

The Cubesat structure consists internally of �ve di�erent modules (COM,

OBC, ACS, PSU and Payload). The last module on �gure 1 is an external

PC which is used for testing and simulation of the system.

2.2 I2C Protocol

The I2C protocol consists of the following.

Start:

The start condition is produced by a master, who wants to use the bus.

It is made by holding the SCL line high, while changing the SDA line from

high to low.

Address:

Address

Address
Programable

address
R/W
Bit

Predefigned

Figure 2.2: I2C-Bus address.

Every device on the I2C-Bus has its own unique 7 bit address. The �rst

4 bit of the address is determined by the type of device connected to the

I2C-Bus and is set by the manufacture of the IC. The last three bits are pro-

grammable, which allows 8 identical devices to be connected to the I2C-Bus.

R/W:

Read/Write is set by the Master, and determines whether the master wants

to read from the slave or write to it. 1 for read and 0 for write.

Acknowledge:

52

Cubesat Internal I2C-Bus

Header No of data Packages

000xxxxx 0

001xxxxx 1

010xxxxx 2

011xxxxx 3

100xxxxx 4

101xxxxx 5

110xxxxx 6

111xxxxx 7

Table 2.2: Number of data packages.

Data transfer with acknowledge is obligatory. The acknowledge-related clock

pulse is generated by the master. The transmitter releases the SDA line

(HIGH) during the acknowledge clock pulse.

The receiver must pull down the SDA line during the acknowledge clock pulse

so that it remains stable LOW during the HIGH period of this clock pulse,

in order to con�rm that it is willing to communicate.

Header: Length:

Header

In Bytes
Length Module Number

Figure 2.3: I2C-header.

The �rst three bits of the header determine how many data packages the

header will be followed by (up to 7 * 8 bit data packages) (see tabel:2.2).

Module:

The device module number. E.g. The PSU temp probe nr. 2 (2*8 bit

data) [00100010]. The total amount of modules you can address is 25 = 32

Data:

53

Cubesat Internal I2C-Bus

The data on the SDA line must be stable during the HIGH period of the

clock. The HIGH or LOW state of the data line can only change when the

clock signal on the SCL line is LOW

Stop:

A LOW to HIGH transition on the SDA line while SCL is HIGH de�nes

a STOP condition.

Checksum:

The data package following the header is an 8 bit CRC Checksum. The

checksum is calculated in the following way.

All the data packages and the header send in one transmission are added to-

gether, the 8 bit result of this calculation is the subtracted from [FFh], this

yields the CRC checksum. The sum of received data is added with the check-

sum. The result is now divided by [FFh] and the modulus of this calculation

indicates weather the transmitted data is corrupted. If the result is di�erent

from 0 the data is corrupted and will be retransmitted. (see Tabel:2.4)

[10110101]

[01101101]

[11111111]

[11011101]

−

+

=

(FFh)

(DATA)

(CRC)

SEND DATA

[11011101]

[01101101]

[10110101]

[11111111]

(CRC)
+

+

RECIEVED DATA

DATA OK

(FFh)
=

Figure 2.4: Calculation of checksum.

54

Cubesat Internal I2C-Bus

not shaded
because transfer
direction of data
and acknowledge bits
depends on R/W bits.

not shaded
because transfer
direction of data
and acknowledge bits
depends on R/W bits.

From master to slave

From slave to master

S A PSlave address R/W A ADATADATA

Master communicating to slave

A master reads a slave immediately after the first byte.

S A A/ASlave address R/W A DATA DATA P

Sr = Repeted START condition

Combined format

S Slave address R/W A DATA A/A

S = START condition

P = STOP condition

A = Not acknowledge (SAD HIGH)

A = Acknowledge (SDA LOW)

Slave addressSr AR/W DATA PA/A

Raed or write

’0’ (write)

Figure 2.5: I2C-Bus communication.

2.3 Communication:

Possible data transfer formats are: Master-transmitter transmits to slave-

receiver. The transfer direction is not changed (see Fig.2.5).

Master reads slave immediately after �rst byte (see Fig.2.5). At the mo-

ment of the �rst acknowledge, the master- transmitter becomes a master-

receiver and the slave-receiver becomes a slave-transmitter. This �rst ac-

knowledge is still generated by the slave. The STOP condition is generated

by the master, which has previously sent a not-acknowledge (A).

Combined format (see Fig.2.5). During a change of direction within a trans-

fer, the START condition and the slave address are both repeated, but with

the R/W bit reversed. If a master receiver sends a repeated START condi-

tion, it has previously sent a not-acknowledge (A).

55

Cubesat Internal I2C-Bus

NOTES:

� 1.Combined formats can be used, for example, to control a serial mem-

ory. During the �rst data byte, the internal memory location has to

be written. After the START condition and slave address is repeated,

data can be transferred.

� 2.All decisions on auto-increment or decrement of previously accessed

memory locations etc. are taken by the designer of the device.

� 3.Each byte is followed by an acknowledgment bit as indicated by the

A or A blocks in the sequence.

� 4.I2C-bus compatible devices must reset their bus logic on receipt of

a START or repeated START condition such that they all anticipate

the sending of a slave address, even if these START conditions are not

positioned according to the proper format.

� 5.A START condition immediately followed by a STOP condition (void

message) is an illegal format.

Conducting housekeeping

When collecting housekeeping from the di�erent units the master only needs

to address a unit and set the R/W condition to �Read�. The unit then deliv-

ers all its housekeeping data to the MCU. Each sensor on a unit is identi�ed

by the module number transmitted in the header.

The funktion for collecting housekeeping is called I2CHousekeeping(). In

order to work it needs 2 parameters

1. Unit

The name of the unit from where housekeeping is conducted

2. Datapointer

The stack pointer where the data will be stored

A practial eksamble

56

Cubesat Internal I2C-Bus

void I2CHousekeeping(int PSU, *datastak)

Controlling Units

When controlling a unit from the MCU, the MCU will of course have to

send data along with the address, header and checksum. In order to write

data to a unit the I2CWrite() funktion is used.

A practial eksamble

void I2CWrite(int PSU, CRCchecksum, header, *datapointer)

It is also possible to read data from a speci�k sensor in order to do this,

the funktion I2CRead() is used.

A practial eksamble

void I2CRead(int PSU, CRCchecksum, header, *datapointer)

Further information about the I2C-bus can be found at.

http://www-us.semiconductors.philips.com/i2c/facts/

57

Cubesat Internal I2C-Bus

The I2C is supported by the MCU. This means that it is not necessary

to build complex external hardware to set up an I2C interface. The only

hardware needed is pull up resistors on the two bus lines. The I2C bus is

con�gured, monitored and controlled by setting and reading di�erent internal

registers:

� ICCFG, I2C con�guration register, this register enables the desired

I2C bus ports. The MCU has two complete I2C interfaces. Interface 1

is used in this project. The register also sets the bit rate for the bus.

The OBC I2C bus uses 97.6 kb/s.

� ICCON, I2C control register, this register is used to operate the bus.

It selects between 7 and 10 bit addresses. In the project 7 bit addresses

are used. It sets the MCU to be the master of the bus, it indicates if

the MCU should be receiving or transmitting data and it controls how

the receiver bu�er generates interrupts.

� ICADR, I2C address register, this register holds the adress of the MCU

in case it is used as a slave.

� ICST, I2C status register, this register holds the current status of the

I2C bus and indicates if an interrupt is pending

� ICRTB, I2C transmit and receive bu�er, the bu�er is 1 byte long. If it

is de�ned in the ICCON register the ICRTB automatically interrupts

when the MCU reads from/writes to it.

Some of the micro controllers implemented in the subsystems did not

support the REPEATED START command. The REPEATED START com-

mand is used when the OBC wishes to both read and write from a slave during

communication. This command is a vital part of the I2C standard. The I2C

protocol developed during the project therefore had to be modi�ed.

Three di�erent software modules used to communicate over the I2C bus was

developed. The module algorithms have been illustrated using �owcharts. In

the following sections these �owcharts will be described.

2.4 Write data to slave over I2C bus

The algorithm shown in �gure 2.6 is used when the master want to send data

to a slave.

First the operating system locks the access to the I2C bus. This ensures that

58

Cubesat Internal I2C-Bus

a program wanting to transmit on the I2C bus do not overwrite a transmis-

sion already in progress. The locking of the bus is done internally in the

operating system. It sets up a semaphore (program) that blocks access to

the bus.

After blocking access to the bus, the status register is reset. Next the in-

terrupt of the transmission bu�er is set up. The interrupt uses the MCUs

Peripheral Event Controller (PEC). PEC is a function that can move data

from one place in the memory map to another using only one clock cycle.

After setting up interrupts the header for the data and a checksum is calcu-

lated according to the I2C protocol designed.

The algorithm then looks up the 7 bit hardware address according to the

subsystem the program wishes to transmit to.

This address is then placed in the transmission bu�er and sent to the slave.

As soon as the transmission has started the program breaks. When the ad-

dress has been transmitted the bu�er generates an interrupt, beginning the

execution a new program. This program checks if there was an acknowledge

from a slave. If not it breaks and returns an error message. In case of ac-

knowledge it places the �rst byte of data that should be transmitted into the

data bu�er. When this is done it breaks. The PEC will then automatically

move the next byte into the transmission bu�er when the previous byte has

been sent. When all the data has been transmitted the PEC interrupts. The

new interrupt checks for an acknowledge from the slave. It then frees the

bus, indicating to the slaves that the MCU is done, frees the semaphore so

another program can transmit and returns the status of the transmission.

The program writing to the slave should conduct a read command after each

write to see if the slave received the correct data, but this is optional in this

algorithm.

2.5 Conducting housekeeping from a slave over

the I2C bus

When the MCU wants to receive housekeeping from a subsystem it will be

done using the algorithm shown in �gure 2.7. As when writing data to

a unit as described above the algorithm �rst locks access to the I2C bus.

It then resets the control register and sets up and ordinary interrupt. It

also transmits the address to the slave it wants to read from, breaks and

interrupts when this is done. The interrupt routine checks to see if the

address was acknowledge by the slave. The MCU then switches into receiver

mode. This can be seen from the slave so the slave immediately starts to

59

Cubesat Internal I2C-Bus

send its housekeeping data. The MCU uses a PEC routine to receive the

data. every time the transmission bu�er is full the data is moved from the

transmission bu�er and into a bu�er in the memory. When all the data except

the last byte has been recieved the PEC routine generates an interrupt. This

interrupt disables the automatic acknowledge generated from the MCU. This

is done to generate a not-acknowledge according to the I2C standard. The

MCU then disables the automatic receiver clock, that synchronizes transfers

and reads the last byte. When this byte has been saved an interrupt is

generated.

The algorithm that frees the bus and checks if the received data was valid

using the checksum. It then frees access to the bus to enable other programs

to use it and returns the the status of the transmission.

2.6 Reading from a slave over the I2C bus

As shown in �gure 2.8 the slave uses a combination of write and housekeep-

ing to read from a speci�c module inside a slave. First a module number

is written to the slave indicating which data it should transmit when the

following housekeeping comes.

60

Cubesat Internal I2C-Bus

ICCON &= ~0x0010; Stop pulse (BUM=0)

 return 0 Returns ok message and breaks.2

Free bus

Free semaphor (unlock I C bus) and
return

When no more data (counter =0) then interrupt and
and go to interruptroutine (level14, group 2)

Interruptroutine

PECinterrupt

ICCON &= ~0x0010; Stop pulse (BUM=0)

2

Free bus

Free semaphor (unlock I C bus) and
return

if (ICST & 0x08) == 1 Tests LRB for 1 (acknowledge was recieved.)Acknowledge?
noyes

Exit application (Wait for interrupt)
Begin datatransmission ICRTB = 0x000 | 0xDATA; Place the first databyte into buffer.

 {return −2} Returns error message and breaks.

ICRTB = 0x000 | 0xI2CADR; Place reciever adress into buffer.

2

DHCS Initiates send I C command:

Read data into I C buffer
Calculate checksum
generate header = Length,module

Reset I C registers2

Use Sub_system and look up adress (I2CADR)
in a table

2

ICCON |= 0x0010; Start pulse + transmit buffer. (BUM=1, TRX =1 automatically)

Create semaphor that locks I C acces

yes

2

SRCP2=memory_databuffer_start −1; data is taken from memory. −1

int I2Cwrite(char Sub_system, int Module, int data_length, *data_pointer)

ICST=0x0000

Transmit

Acknowledge?
no

because counter is incremented after PEC

 {return −2} Returns error message and breaks.

DSTP2=ICRTB; and placed in the transmitbuffer
 PECC2 =0x05|DATALENGTH; PEC2 interrupt set up:

 Source +1, move byte,
 data to send: datalength param..

XP1IC=0x0077; 1110111, first bit enables interrupt.
 The following means int.: level13, group 4

 PECC2 =0x05|0000; PEC2 interrupt set up:

Figure 2.6: The I2C write algorithm

61

Cubesat Internal I2C-Bus

DHCS Initiates Housekeeping I C command:

int I2CHousekeeping(char Sub_system, datalength, *data_pointer)

Transmit reciever adress
ICCON |= 0x0010; Start pulse + transmit buffer. (BUM=1, TRX =1 automatically)

2

(I2CADR) in a table
Use Sub_system and look up adress

ICRTB = 0x000 | 0xI2CADR; Place reciever adress into buffer.

Exit application (wait for interrupt)

Create semaphor that locks I C acces

.

XP1IC=0x007B; The first bit enables interrupt, the rest sets int. to level 14 group 3.
ICST=0x0000

PECC3=0x0000. 00 disables PEC interrupt = normal interrupt.

When interrupt (level 14 group 3) go to interruptroutine 1

2

2

Reset I C registers

dummy = ICRTB; Start clock to recieve first byte (header).

 return −2 Returns error message and breaks.

acknow−
ledge?

yes

no
return −1

Go to Master−reciever mode ICCON &= ~0x0080; TRX = 0, master recieve mode.Interruptroutine 1

XP1IC=0x0079; The first bit enables interrupt, the rest sets int. to level 14 group 1.
SRCP1=ICRTB; The reciever buffer
DSTP1=memory_databuffer_start; where the data recieved is placed

ICCON &= ~0x0010; Stop pulse (BUM=0)

PECC1=0x05|DATALENGTH−2; 05 = Inc. dest. 1 byte per int. DATALENGTH−2 because
 from second last byte int. is different.

Exit application (wait for interrupt)
Start dataretrival

until 2. last byte
PEC interrupt

Save last byte

and return

Interruptroutine 2

ICST &= ~0x0010; Clear Interrupt bit (IRQD=0)

 return 0 Returns ok message and breaks.

Save recieved byte
Start retrival of next byte

Wait for transmission to finish

ICCON |= 0x0040; Prevents the start of a new recieve clock when reading from ICTRB.

2Free semaphor (unlock I C bus)

When interrupt (level 14 group 1) go to interruptroutine 2

No

Yes

Data ok?

PECC0=0x05|00; 05 = Inc. dest. 1 byte per int. 00 disables PEC.

ICCON |= 0x0020; Disables Acknowledge (ACKDIS) for last byte recieved. (NACK)

Interruptroutine 3

XP1IC=0x0078; The first bit enables interrupt, the rest sets int. to level 14 group 0.

When interrupt (level 14 group 0) go to interruptroutine 3
memory_databufferstart+datalength−2 = ICRTB; Save last recieved byte and start new recieve

memory_databufferstart+datalength−1 = ICRTB; Save last byte.

Free bus

Calculate CheckSum and compare
this to checksum in header

Free semaphor (unlock I C bus)
and return

Figure 2.7: The I2C housekeeping algorithm

62

Cubesat Internal I2C-Bus

Return error
(return ReturnValue)

NB!
When slave recieves only the header.
It indicates that it should gather data
according to modulenumber. This data
will then be transfered next time the
slave is asked to send.

DHCS Initiates send I C command:2

Create semaphor that locks I C acces2

=0?
ReturnValue

No

Yes

ReturnValue =I2CHousekeeping()

int I2Cread(char Sub_system, datalength, Int Module, *datapointer)

=0?
ReturnValueReturn error

(return ReturnValue)
No

Yes

ReturnValue =I2CWrite() parameter: Datalength=0

parameter: Datalength = datalength (parameter to I2Cread)

 Module= module (parameter to I2Cread)

 *datapointer = *datapointer (parameter to I2Cread)

 Sub_system = sub_system (parameter to I2Cread)

 Sub_system = sub_system (parameter to I2Cread)

Return ok
(return 0)

Figure 2.8: The I2C read algorithm

63

Chapter 3

Software functions

Description: This document describes the di�erent software functions de-

signed for the OBC. The driver software used for accessing hardware com-

ponents, is described in this section. These creates the interface between the

OBC hardware and the DHC software.

Responsible group: 01gr732@control.auc.dk

Subsystem: OBC

Date: 19.12.01

Rev.: 1.0

File name: OBC_design.pdf

Path: http://www.cubesat.auc.dk/dokumenter/OBC_design.pdf

Literature:

http://www.in�neon.com/

64

Software functions

3.1 OBC Bootsequence

The Bootsequence of the Satellite is described in �gure 3.1.

Enough power no

for OBC?

yes

PSU powerup

yes

yes

yes

no

from EEPROM

from PROM

no

Basic Beacon
Communicationunit powerup

Get status from subsystems

Go to advanced
Beacon mode

for beacon?
Enough power

Chargemodeno

Killswitch is released

Set ACS to detumbling

Mission mode

noSensors say
detumbled?

Ground say
detumbled?

yes

no

yes

Reset boot−watchdog

OBC Boot Sequence

Time and position data sync.
Acknowledge from ground

New bootsoftware
in EEPROM?

EEPROM
checksum ok?

Basic Boot from PROM

Load CDHS

Load CDHS

 Boot CDHS

Figure 3.1: The Cubesat initialization mode

65

Software functions

It is only the part of the diagram within the dashed lines that will be de-

scribed here. This is because this is the only part that is controlled only by

the MCU.

3.1.1 Basic boot from PROM

When the MCU is powered up it will start reading from the PROM module

at address 0x0000.

Here lies the module that contains both the software needed by the MCU

to boot the system and all the other applications that are running on the

OBC. The software in this module is permanent and cannot be changed.

The boot is split up into two parts: A basic boot and an advanced boot.

The basic boot is stored in the PROM and will set up the MCU minimaly

by con�guring only the most vital internal parameters. By minimising the

setup in the basic boot alows for more �exibility if it later is desired to change

di�erent parameters on the MCU.

3.1.2 Checking for new software

When the MCU has completed the setup it will check a �BootSelect-pin�. If

this port is high it indicates that the EEPROM contains new software and

that it should try to continue the boot from the EEPROM. Otherwise it will

continue its boot from the PROM. How the boot selection works, is described

later on in the document.

3.1.3 Verifying new software

Next the MCU will calculate a checksum of all the data stored in the �ash

memory. It will then compare this data to a checksum stored in the second

byte of the �ash memory. This is done to ensure that the data in the �ash

memory is not corrupted since this could cause critical malfunction of the

satellite. If the data turns out to be corrupted the boot will continue from

the PROM. If the data is veri�ed, the MCU will continue the boot from the

EEPROM.

3.1.4 Advanced boot

The MCU is at this point only setup minimally, i.e. important hardware

registers has been con�gured, i.e. CS windows which is described in the

hardware section. A complete setup is performed in the advanced boot se-

quence, which involves i.e. con�guring all the ports on the I/O directions and

66

Software functions

setting up the I2C bus. When the MCU is con�gured, the operating system

is loaded and initialized by moving the programpointer to a certain place

in the PROM/�ash memory. Afterwords the OBC will execute commands

initiated by CDH.

3.1.5 BootSelection-port

The BootSelection-pin is controlled by the PSU. This is done to let an exter-

nal unit control what kind of ROM the system is booted from. The PSU has

to be able to shut down the OBC in case of a malfunction i.e. if a latch-up

occurs. The advantage of using the PSU is to be able to switch between

the boot ROM without using the MCU. Figure 3.2 illustrates the algorithm.

Port 6.7 on the MCU has been chosen to the �BootSelection-pin� on the MCU.

BOOT from PROM: PORT X = 0

BOOT from EEPROM: PORT X = 1

PORT X = 0

(PORT X status is programmable via I2C)

TURN ON OBC

START TIMER

YES

SET PORT X = INV. PORT X
TURN OFF OBC

WAIT X SEC.

RESET TIMER

NO

YES

(RESET FROM OBC)

TIMEOUT?

TIMEOUT?
NO

(RESET FROM OBC)WAIT

WAIT

TURN OFF OBC

WAIT X SEC.

Figure 3.2: The PCU algorithm for choice of boot ROM

When the Power Supply Unit (PSU) is turned on it will set the boot ROM

67

Software functions

to the PROM (Port 6.7 = 0 in the illustration). This situation only happens

when we boot up the system the �rst time or if the PSU has malfunctioned.

The PROM software is to be tested many times on earth which means that

the boot sequence will be reliable when burned into PROM. The initial boot

software will be placed in both the PROM and in the EEPROM to include

some redundancy. When PROM has been chosen it will power up the MCU.

As described in the boot section the boot software will check a BootSelection-

pin connected to port 6.7 to see in which ROM it should continue. After

turning on the MCU it will start an internal timer. If the timer over runs,

it indicates that the bootsequence has failed. It will now invert the logical

level of PORT 6.7 (In the initial case it will become PORT 6.7 = 1). Next it

will shut down the MCU wait a few seconds and turn it on again. This time

the MCU will continue its boot from the �ash memory since PORT 6.7 = 1.

If this also fails it will go back and try to boot from the PROM and so on. If

the boot succeeds the PSU will start acting like an external watchdog to the

MCU. This is done by initiating a timer. If the timer isn't reset periodically

by a command through the I2C the PSU will shut down the MCU and try to

restart it. The PSU has been chosen to be external watchdog since it needs

to be able to turn on and o� the MCU anyway to protect from latch-up. In

case of �ashing new software into the �ash memory, the boot selection pin

will be set to 1 (boot from �ash memory) via the I2C bus. When the system

is rebooted the algorithm will change the boot ROM back to the PROM if

booting from �ash memory fails.

3.1.6 Get temperature on the OBC and Camera

The function Get_temperature is used to get the temperature on the OBC

(On Board Computer) and the camera Unit. When the function is called,

it must get the temperature and return a 8 bit temperature value. The

�owchart of the function is illustrated in �gure 3.3.

Two sensors of the type LM19, are placed on each unit and their output volt-

age goes from 0.3V to 2.5V. The sensors are able to measure a temperature

range from -55o celcius to 130o celcius.

The micro controller used (C161PI) has implemented an ADC (A/D-converter),

which makes it possible to convert an analog voltage to a binary value. The

OBC ADC is 10bit, but it has been decided only to use the 8bit, because

this is accurate enouogh for housekeeping purposes.

To make the best possible use of the 10 bit and not make a ampli�er circuit

for the thermometer, the ADC is set to convert between the to voltage val-

ues 0.3V to 2.5V. This is done by the ADC two references input VAGND and

68

Software functions

char Read_temp(int device);

Start convertion

Wait for convertion to finish

Result in the register ADDAT

the OBC temperature
Measure the camera and

Intiliazation

Init A/D converter: ADCON &= 0000 1111 0000 0000b

This means that the ADC only converts at one time, at the
specified port.

ADCON = ADCON| (0000 0000 1000b + device number); .
Setting the AD−converter to singlemode convertion.

while (1=!ADCON.8) { do nothing };
Waiting for the flag to be cleared, when the covertion is finish.

The ADC in progress the flag is set, when the ADC is running.
This flag is cleared when the ADC is finish

Return((_iror_(ADDAT,2)&0000 0000 1111 1111b); Returning 8bit result.

The ADC can return a 10bit result, but we have agreed
only to use a 8bit result.

Define input ports as input ports: P5DIDIS += 11b; Useing channel 1 or 2

Figure 3.3: Get_tempearture function �owchart.

VAREF .

The OBC ADC is able to converts in several modes, but the ADC is pro-

grammed to converts in a single mode. It means that the ADC only converts

one time at a speci�ed port, where the temperature sensors are connected.

The sensors are connected to port P5.0 and P5.1. Therefore is the input

to the function ADC a char value, which speci�es the port the ADC has to

convert. When the input is 1 the ADC converts the temperature on the OBC

and 2 the temperature of the camera unit.

When The ADC is �nish converting it returns a 8 bit temperature value.

The program code to this function has been made and it is showed in �gure

3.3, but the actual circuit was not build yet and therefore has the program

code not been tested completely. For Further information about the ADC

see the manual for SAB C161PI.

3.1.7 Flash Memory and load new data

When the satellite is in orbit, a new program can be uploaded, if the one

on board is not working properly, or new things needs to be tested. The

function Flash_memory �ashes the memory and load new software from the

69

Software functions

Ram-modules into the memory models. The function is illustrated in the

�gure 3.4.

Before loading new software, the Flash memory has to be erased, which

means that all the cells in the �ash memory are set to '1'. The function

Flash_memory programs the �ash memory and returns 0 if the �ashing was

successfully and 1 if the �ash memory could not be �ashed. If the function

returns a 1, the function has tried to �ash the �ash memory �ve time, but

did not succeed. It means the one cell in the �ash memory could not be set

to '1'. The program code has been designed and illustrated in �gure 3.4. For

further information about the the �ashing see the manual for M29F010B.

When the �ashing has ended successfully, the new data is loaded into the

memory modules. When this is done the data has to be veri�ed (See section

3.1.8) and if the data i correct and the DHCS can be restarted.

3.1.8 Veri�e stored data

When a new data is loaded into the Flash memory is has to be veri�ed if

the data is correct. That is what the function checkbit_cal does. Figure 3.5

illustrates by means of a �owchart which tasks the function has to performs.

After the Data is load into the �ash memory module, the OBC runs the

function ckeckbit_cal. The function calculates a check byte by summing all

the data in the �ash memory together which creates a word. The checksum is

calculated by subtracting the low 8 bit of the word from 255, i.e. CRC=255 -

summed byte. The Check byte calculated on Earth, is stored in the last byte

of the �ash memory. When the function gets the result 255, which means

that the data is stored correct, it returns a '0'. If it is not right, the function

returns an '1'.

70

Software functions

Wait for the Erase to finish

Write to Rom: ADR: 555h

ADR: 2AAh

ADR: 555h

ADR: 555h

ADR: 2AAh

ADR : 555h

To clear the Flash Ram, the folloving data
has to be written to the Flash Ram.a

Data : AAAAh

Data : 5555h

Data : 8080h

Data : AAAAh

Data : 5555h

Data : 1010h

This clear two ram modules in parelle.

Is DQ5=’1’ ?
Return − there was an error

char count_flashings;
count_flashings = 1;

count_flashings++;

if ((HVAR(int, 0x0)&0x20)+(HVAR(int, 0x0)&0x2000) != 0 || count_flashing < 5)

{ Return − use a ’do while’ loop

}

bit Flashing Ram(void)

was syccesfully
Flashing

Yes

Load Data and
Run checkbit

Start DHCS
If data was okey, then start DHCS
else return(1).

Load data into flash memory from ran,
and start to verify if the data is correct.

if ((HVAR(int, 0x0)&0x80)+(HVAR(int, 0x0)&0x8000) != 0)

{ } The flash Ram output pin DQ7
goes from ’0’ to ’1’ when the erase
cycle is finish. This has to be check
in both Rams.

The output pin DQ5 is set to ’1’
if there was an error during the erase.
If the return has happend 5 times
I think the Flashram can not be flashed.

No: Return(1);
if (count_flashing < 5)

{return(0) }
else {return(1) }

Returns ’0’ if the flashing was successfully
and ’1’ if it could be erased.

Figure 3.4: Flash_memory function �owchart.

71

Software functions

Checksum calculation

adr = 0x4000;
checksum = 0x0;

{checksum += HVAR(int, adr) ;
While(Adr > 0x7FFF)

 adr++;}

Calculation checksum

Checksum at adress 0x7FFF

char checksum ;

else
Return(0);

Return(1);
Return 1 if the checksums is

if (HVAR(char, 0x7FFF = checksum)Comparring stored checksum

equal and 0 if they is not.

with lculated checksum .

Bit cal_checksum(void);

Figure 3.5: Checkbit_cal function �owchart.

3.2 Hamming corection of 2 errors

Hamming code corection is easy to implement on a computer if all code and

decode calculations are executed in matrix notation. This section describes

how it is posible to make a Hamming code correction that is able of correcting

2 errors. The proces exists of 2 functions like the Hamming(12,8) error

corection. All calculations is done in a �eld where only the numbers 0 to 15

are available, that is, only 4 bit is used.

3.2.1 Encoding

It is only posible to encode 5 bit at a time so every byte has to be split

into sequences of 5 bit. These 5 bit is organized in a column vector. To

encode these 5 bit these must be multiplied with a BCH(k,t) matrix. The

number k is 4 which derives from the 4 checkbit in the linear Hamming code.

The number t tells how many errors that can be corrected. Using Euclids

algorithm for decoding, it is possible to correct 2 errors. After encoding every

byte has changed to 2x15 bit encoded word.

3.2.2 Decoding and corect

Decoding and correct consist of 3 steps. Every 15 bit is taken one by one.

First the word has to be decoded which is done by multiplying a Vander-

monde matrix V(k,t) with the 15 bit column vector. The dimension of this

72

Software functions

matrix is 15x6. The numbers k and t has the same value as when encoding.

In this case k equals to 4 and t equals to 3. A V(4,3) matrix has 6 rows

and 15 column. The result of the multiplication is a 6 row vector. This is

transposed into a 6 column vector.

Second, by using Euclids algorithm on the 6 column vector, three coe�cient

for a second degree polynomian can be found.

The third thing to do is to �nd the roots in this polynomial. To do that, the

Horners scheme, in this speci�c �eld, is used. See �gure3.6 for a �ow chart

of the code-decode sequence.

Polynomial of 2 degree

Multiply the encoded data by
(6*4bit)x15 Vandermonde matrix

6x1 bit row vector

15x1 bit row vector

Using Euclids algorithm on the vector

Search for roots by Honers scheme
and flip the errors

Encode 5 bit by BCH(4,3) generator matrix

5 data bit

Figure 3.6: Flowchart of coding and decoding

73

FPGA

Description: This document contains information about how to select, pro-

gramme and implement a FPGA (Field Programmable Gate Array) as the

address decoder on the Cubesat Obc. Responsible group: process 732,

01gr732@control.auc.dk

Subsystem: On Board Computer.

Date: 19.12.01

Rev.: 1

File name: OBC_design.pdf

Path: http://www.cubesat.auc.dk/dokument/OBC_design.pdf

Chapter 4

FPGA

A Fpga has been designed to manage the address decoding from both the

obc and the camera. The decoder logic was to begin with implemented in

two PEEL circuits, but after consulting with TERMA and ESA it was de-

cided to change that, and implement the address decoder logic in one FPGA,

because of the versatility of a FPGA it was also possible to implement the

three counters, that were previously implemented in three separate circuits.

thereby decreasing the complexity of the hardware.

Terma recommended that a FPGA from the manufacture Actel was used.

Actel has a lot of experience and knowhow regarding space components.

4.1 Choosing a FPGA

The relative simple complexity of the decoder logic, allowed use of the eX

fpga series from Actel.

The eX family has some features that makes it very suitable for low cost

space applications. Some features:

� 3.9 ns Clock-to-Out (Pad-to-Pad)

� High-Performance, Low-Power Antifuse FPGA.

� Very Low Static Current (as low as 397 �A).

� LP/Sleep Mode for Additional Power Savings.

� Advanced Small-footprint Packages.

� Live on power up.

75

FPGA

� Power-Up/Down Friendly (No Sequencing Required for Supply Volt-

ages).

� Con�gurable Weak-Resistor Pull-up or Pull-down for Tristated Out-

puts at Power Up.

� Individual Output Slew Rate Control.

� 2.5V, 3.3V, and 5.0V Mixed Voltage Operation with 5.0V.

The FPGA eX128TQ100I was chosen, as it supported what was needed for

the design, and it allows the design to contain redundancy circuits.

The eX128TQ100I contains.

� 128 �ip-�ops

� 6000 system gates

� 70 user I/O's

4.2 Designing the FPGA

The design tool used to programme the FPGA was the �Libero� integrated

design environment supplied by Actel.

A free �Libero silver� edition was obtained and installed on a computer.

In order to programme the FPGA an arrangement was made with TERMA

to use their equipment.

FPGA circuit

On �gure 4.1 the diagram of the address decoder logic implemented on the

FPGA is shown.

76

FPGA

50
_N

S
_D

E
LA

Y

Figure 4.1: FPGA logic

77

FPGA

Pin assignment

Pin number Function Pin number Function

1 GND 45 A14

2 TDI 46 A15

6 CCE 47 A16

7 TMS 48 A17

8 VCCI 49 TDO

9 GND 50 A18

10 VCLK 51 GND

11 CCLR 55 A19

12 SYNC 56 A20

13 BHE 57 VCCI�

14 HCLK 58 VCCI�

15 R_W_MCU 59 A21

16 TRST 60 PROM_LB

17 CS0 61 PROM_UB

18 CS1 62 RAM_LB

19 CS2 63 RAM_UB

20 VCCI 64 FLASH_LB

21 CS3 65 FLASH_UB

22 CS4 66 R_W

25 A0 67 VCCA
26 A1 68 GND,LP

27 A2 69 GND

28 A3 70 CS_RAM1

29 A4 71 CS_RAM2

30 A5 72 CS_RAM3

31 A6 76 CS_RAM4

32 A7 77 CS_RAM5

33 A8 78 CS_RAM6

34 PRB 79 CS_RAM7

35 VCCA 80 CS_RAM8

36 GND 81 FINISH

38 A9 82 VCCI
39 HCLK 87 CLKA

40 A10 88 CLKB

41 A11 90 VCCA
42 A12 91 GND

43 A13 92 PRA

44 VCCI 100 TCK

78

Camera payload

Description: The purpose of this document is to describe the payload of the

Cubesat. The payload has been chosen to be a cameraunit. The document

will describe the purpose of the payload, the design of a suitable lens, the

camera unit and the interfaces to it. It will also try to cover some of the

considerations and suggestions that were conceived during the design of this

unit.

Responsible group: OBC, 01gr732@control.auc.dk

Subsystem: On Board Computer & Camera Unit.

Date: 19.12.01

Rev.: 1.0

File name: OBC_design.pdf

Path: http://www.cubesat.auc.dk/dokumenter/OBC_design.pdf

Literature:

[1] Light Measurement Handbook, Alex Ryer, pdf-document from Interna-

tional Light(http://www.control.auc.dk/ 01gr732/pdf/light-handbook.pdf).

Chapter 5

Payload

5.1 Introduction

During the preliminary Cubesat meetings in the summer of 2001 the mission

of the satellite was discussed. Among the many mission objectives were e.g.

testing of components for space feasibility and measurement of the space en-

vironment regarding radiation and temperature. The missions were though

very limited since the necessary payload for the mission should be small in

weight, measure and powerconsumption. Later on it was decided that a

camera would be a realistic payload. The primary mission was decided as:

Letting companies, research institutes and the general public take pictures

of Denmark via the Internet. The purpose of this is to provide free scienti�c

information and increasing the general interest for space technology and nat-

ural science altogether. Later the CubeSat project was contacted by Århus

University. They were interested in using the camera to measure star light

intensity. It will not be needed to change the satellite or modify current

designs to carry out this secondary mission.

5.2 Preliminary research

At one of the Cubesat meetings it was decided that we should make some

preliminary research in what kind of camera would be realistic to implement

into the satellite. Four di�erent cameras were looked upon:

� The PC67XC/2 �g:5.1. A complete CCD camera solution from the

company Supercircuits(http://www.supercircuits.com). The company

advertises on their website that this camera has been used by NASA

for a space�ight. The resolution is 251.904pixel. If taking a 100km

80

Payload

x 100km picture of earth the resolution would be 195m x 203m. The

good thing about the camera is that it is a complete solution incl. a

standard lens mount (C-mount). The solution is also fairly cheap and

is available for 130$. On the other hand the camera comes with an

analogue interface and has a 10 - 16V interface consuming 3 - 4.8W.

Figure 5.1: PC67XC/2 photo chip from Supercircuits.

� PB-MV40 �g:5.2. This is a HighSpeed CMOS photochip from the com-

pany Photobit(http://www.photobit.com). This means that is simply

the chip that converts optical light into a digital signal and places it

onto its ports. The chip needs a structure to hold a lens and some

interfacing before it can be implemented as a camera. The resolution

of this camera is 4mill pixel. If again we were to take a picture of earth

it would give a resolution of 50m x 50m. The good thing is that the

chip has a very high resolution, a low powerconsumption (700mW @

250 frames pr. second) and is fast. On the other hand one chip cost

about 2000$ and need work before it can be implemented.

Figure 5.2: PB-MV40 photo chip from Photobit.

81

Payload

� PB-MV13 �g:5.3. This HighSpeed CMOS photochip is also from Pho-

tobit(http://www.photobit.com). This version has a 1.3mill. pixel res-

olution. This gives a resolution when taking a 100km x 100km picture

of 78m x 98m. The chip also has a freeze-frame function, which means

that it takes the picture in a single shot. Other camerachips read the

value of each pixel one at the time. This camera reads all pixels simul-

taneously - making it extremely fast. The good thing is that it is fast

and has a low powerconsumption (150mW @ 60 frames pr. second).

On the other hand it costs about 1700$ and need work before it can be

implemented.

Figure 5.3: PB-MV13 camera chip from Photobit.

� MCM20027 �g:5.4. This chip is manufactured by the well-known �rm

Motorola(http://www.motorola.com). It has a resolution of 1.3mill

pixel, which as above gives a resolution of 78m x 98m. It comes for

about 22$ when buying 10.000 units. The price for one unit is not

known but it is expected to be much cheaper than the Photobit chips

above.

Figure 5.4: MCM20027 camera chip from Motorola.

Pro and cons

Each camera has been rated regarding di�erent criteria (�g:5.2). The rating

is from � as the worst rating to +++ as the best. The criterias have also

82

Payload

Camera Weight PB-MV40 PB-MV13 MCM20027 PC67XC/2

Power consumption 5 ++ +++ ++ �

Resolution 3 +++ + + �

Price 1 � + ++ ++

Interface 4 - - + �

Size 4 + + + ++

Weight 5 + + + ++

Type of shutter 2 ++ +++ ++ +

Temperaturerange 5 ++ ++ + 0

Additional work

before implementa-

tion

4 � � � -

Availability 2 + + +++ +

Voltagelevel 4 +++ +++ ++ �

Result 38 42 43 -13

Table 5.1: Camera weighting.

been weighted after their importance to the project.

The conclusion of the weighting is that the best choice of camera is a camera

based on the MCM20027 from Motorola.

5.3 Construction of the camera

The camerachip will need some additional implementation before it can be

used. Since we have no prior experience in this kind of technology and we are

under a tight schedule to �nish the on board computer the group decided that

it could not spare the manpower to develop a cameraunit itself. Instead it

contacted the Danish company Devitech(http://www.devitech.dk) currently

resided in Nørresundby. Devitech is a company that produces dedicated

camera solutions for speci�c assignments. After a short meeting with Niels

Heeser Nielsen, the managing director and Peter Jüergensen project engineer

it was decided to initiate collaboration in the making of a dedicated camera

for the CubeSat. Devitech are currently working on a camera prototype based

on the kac-1310 (kodak) camera chip very similar to the MCM20027. The

prototype is scheduled to be �nished 1. December. Devitech has decided to

sponsor this prototype free of charge to the project. They have furthermore

agreed to use both engineering manpower and money in making a speci�c

version that will suit the project.

83

Payload

5.3.1 Interfacing the cameraunit

The cameraunit will need some interfacing before we can use it on board the

satellite.

I2C

First of all it will be needed to set up di�erent registers in the camera such

as gain and shutter mode. This initialization can be done via the I2C bus

already decided to connect the di�erent units in the satellite. The camera

from Devitech is I2C programmable as standard.

The port con�guration of the camera

When the camera is taking a picture it will lower the voltage on a dedicated

TRIGGER-port on the unit. This will signal the OBC that there is picture

data from the camera. The camera works by integrating the value of each

pixel one by one. The 10-bit value will be read out on a 10-bit dataport.

When data is ready on the dataport the HCLOCK-port will go low. The

camera will be set to integrate the pixels in vertical lines. This is done to

prevent data loss when switching between the di�erent 256kbyte memory

modules. When a line has been �nished the cameraunit will raise the voltage

on a VCLOCK-port for a short period to indicate that it is beginning on a

new line. The exposure time (integration time) is controlled by a pixelclock

supplied from external logic. The external logic / Camera-OBC interface is

described the OBC designdocument.

Power interface

The camera is based on a 5V powerbus as supplied by the satellites power-

supply. The camera consumes up to 400mW but only 300mW at 13.5Mhz

which is a little above the frequency we are planning to use. The camera can

go into a stand-by mode where it consumes 50mW.

5.3.2 Exposure

It is important to ensure that the camera will have the right exposure when

taking the picture. The camera has two di�erent programmable gain func-

tions. This means that you can set a gain factor of the value of each pixel.

The �rst gain function can set the gain between 0.483 and 7.488. The second

function (raw gain mode) can set the gain between 0.0695 and 1.36925. If the

gain is set above 1 the signal-to-noise ratio (SNR) will increase signi�cantly

84

Payload

hence making the picture quality decrease. It is therefore better to expose

the camerachip too much instead of too little. To make sure that this is the

case the following estimate of the light intensity from earth has been made:

Light re�ected from earth (albedo): 30%

(http://www.spenvis.oma.be/spenvis/ecss/ecss06/ecss06.html)

Variation in re�ection: Max 20%

(http://www.solarviews.com/eng/earth.htm#stats)

Light intensity from the sun outside the atmosphere: 1370Wm2

Light intensity from the sun at the surface of the earth: 1000Wm2

(clear day at noon, http://www.solarpartners.org/tnotese�.html)

Intensity loss in the atmosphere:
(1370�1000)

1370
= 27%

Light intensity seen from CubeSat:

(0:3 � 1000Wm2) � (1� 0:27) = 219Wm2 = 16425lux

Normal light intensity indoor: 200 - 500lux

(http://www.indeklima.at.dk/maaling/html/indhold/afsnit7.html)

According to Devitech the cameras light sensitivity is good enough to take

pictures indoor. The diameter of lens in front of the camera will a�ect the

amount of light that will illuminate the camerachip. This will be described

later in detail. It is though weighted that the illumination from earth is so

strong that this factor will have a limited saying. Hence comparing the esti-

mated amount of light with the normal indoor light intensity it is estimated

that there will be enough light intensity to exposure the camerachip. The

light intensity will be adjusted later by turning down the gain on the camera.

This will be made by additional experiments on the cameraunit.

5.3.3 Robustness of camera.

The camera components have no protection against radiation. This means

that the camera can be disturbed by radiation and the taking of the picture

may be corrupted. Since the camera will only be active for a very short period

of time it is weighted that rate of errors will be fairly small. The temperature

range of the camera is according to Devitech limited to the temperature range

of the camerachip. According to the datasheet of the kac-1310 camera chip

85

Payload

the operating temperature of the chip is 0ÆC - 40ÆC. This means that either a

passive or active thermal control of the camera is needed. A passive thermal

control is recommended since the active control will require some sort of

heating device, which will add to the list of hardware needed and the power

consumption. The passive thermal control could be implemented by leaving

the cameraunit in stand-by mode. The power consumed will then heat the

camera. Also due to the needed length from lens to camera (46.5mm) the

camera will be placed in the middle of the satellite. Here the temperature

deviations aren`t as big as in the regional areas. The camera unit will also

be �tted with a temperature sensor so that we can monitor the camera and

abort the taking of a picture if the temperature is to low.

5.4 Structure budget of camera.

The camera will be up to 50mm x 50mm. It will be a Printed Circuit Board

(PCB) with components on both sides. On one side the camerachip will be

placed. This chip is 5mm thick. The total depth of the unit will probably

be about 15mm. The total weight of the cameraunit will be under 30g.

5.5 Lens

To comply with the speci�cations on taking a 100km x 100km picture of

earth (footprint) we need a lens in front of the camerachip. The lens also has

a�ect on the amount of light exposed on the camerachip. To design the lens

the following calculations where needed.

5.5.1 Designing the lens

In this section the optical design is going to be analysed. At �rst it is impor-

tant to know how far from the CMOS-chip the lens should be placed. If this

distance is more than 100mm, which is the length of the Cubesat, then it is

not possible to use only one lens. Second is to discuss what kind of lens is

the optimal for this speci�c purpose. Maybe it is possible to use a low-price

lens that has a certain amount of distortion which will not e�ect the quality

of the picture because the resolution on the CMOS-chip is lower than the

distortion of the lens. Another possible aspect is to get the lens which is

optimal for the Cubesat and within a reasonable price limmit. In the end of

this paper it will be discussed what should be the next step in order to get

a lens which is suitable for he AAU Cubesat.

86

Payload

5.5.2 Placing the lens in focus

To get the best picture of Denmark it is important to place the lens the right

distance from the camera. This lens distance vary according to the distance

to and the high of the object the camera is looking at. In the Cubesat's

lifetime this lens distance will remain the same because the camera has the

same object, the same orbit and approximately the same height. The change

in the satellite altitude has all together no in�uence on the picture quality

because it is very small in proportion to the distance from the earth to the

Cubesat.

The area the camera is going to take the pictures of is decided to be about

100x100 km and the area on the camera chip where it is optical sensitive is

7.68x6.14mm. In order to get the best result the entire sensitive area of the

chip ought to be used when taking the picture. The chip it rectangular and

therefore the picture of earth will be so too.

The model below illustrates the travelling of light from the object through

the lens to the photo chip.

Figure 5.5: Light from object to image.

ho: Height of object.

hi: Height of image.

p: Distance from object to lens.

q: Distance from lens to image.

In the CubeSat project the height of the object (ho) is 100km and the dis-

tance (p) is 600km. To calculate the distance from the lens to the chip (q)

the magni�cation equation is very useful:

87

Payload

m =
hi

ho
= �

q

p
(5.1)

In order to get the entire chip to take the picture, the longest side of the chip

is used to calculate the distance q:

q = �

hi

ho
� p = �

7:68mm

100km
� 600km = �46:08mm (5.2)

The distance from the lens to the camera is -4,608cm which means it is

possible to use only one lens inside the Cubesat.

When looking for a lens it is important to know how long the focal length

(f) is. The focal length can be calculated by means of the lens' equation :

1

f
=

1

p
+

1

q
(5.3)

f =
p � q

p+ q
=

600km � 46:08mm

600km+ 46:08mm
� 46:08mm (5.4)

In the Cubesat's case the focal length almost equals the distance q because

the distance to the object is so large. The next step is to use the lens

maker's equation and to �nd a lens which has the three parameters that

approximately matches the focal length.

Lens Maker's equation :

1

f
= (n� 1)

� 1

r1
�

1

r2

�
(5.5)

In the following, di�erent lenses will be taken into consideration and in

the end one selected.

5.5.3 Di�erent lenses

When deciding what kind of lens that should be use in the AAU Cubesat, the

environment has to be taken into account. The lens is placed in a vacuum

environment and the lens will be exposed to at lot of radiation. Therefore

the following demands must be ful�led :

88

Payload

� The lens may not have any closed airspaces which can erupt in vacuum.

� The lens glass may not deteriorate during the �rst year in space (radi-

ation).

� If more than one lens is cemented together, the binding material may

not deteriorate during the �rst year in space (radiation).

� Rapid changes in the temperatur may not damage the lens glass.

There are several kinds of lens types, but the best to use when looking

at an object at an in�nite distance, is an Acromat-lens or a Triplet-lens.

The Acromat is cheaper and lighter than the triplet because the Acromat

is a composite of only to lenses where the triplet is a composite of three

lenses. The triplet on the other hand has in most cases the advantage of

less optical distortion (a less blurred image). The crucial part is to get the

optical distortion smaller than then the size of one pixel on the CMOS-chip

in our case the pixel is 6x6mm.

With the help of Carl-Erik Sølberg(Engineer lic.tech. instisute 13 at Aal-

borg University) , the two lenses have been simulated in order to �nd out how

big the distortion would be for each lens type. The problem is that not even

the best lens would be able to focus all colours from on speci�c point in the

object to the same speci�c point in the image. The problem is negligible if

the lens would be able to focus all colours within on pixel and that is why we

are able to judge whether to use an Acromat or a Triplet lens on the AAU-

Cubesat.

The simulation results were :

In the middle of the image In the corner of the image

Acromat-lens A spot of 5x5mm An elliptical spot of 100x50mm

Triplet-lens A spot of 7x7mm An elliptical spot of 15x8mm

The simulation reveals that it is impossible to avoid blur when using the two

lenses with a pixel size of 6x6mm. Therefore to get best possible picture with

minimum blur in the corner, it is advisable to use a Triplet-lens.

Another calculation Carl-Erik Sølberg made, is how large the diameter of

the diaphragm should be. Without lens-error the di�raction of the light makes

a spot on 10mm with a diaphragm of 6mm. Because of that the diaphragm in

the Cubesat has to be at least 12mm to keep the spots smaller than the pixel

size.

89

Payload

5.5.4 Structure budget of lens

The physical dimensions of the lens is as given above. The total mass of the

lens is approximately 20g.

5.6 Structure between camera and lens.

The cameraunit needs to be mounted very precise in front of the lens. This

is to ensure that the light hits the camera chip in the precise distance of the

lens. Otherwise we can risk that the picture will be blurred. To ensure this

there should be mounted some sort of structure between the lens and camera

PCB. The diameter of the structure should equal the diameter of the lens

and the length should equal the focal length calculated above. The structure

is de�ned by the structuregroup.

90

Part I

Appendix

91

Appendix A

I2C houskeeping

93

I2C houskeeping

= 5?
Counter

No

Yes

(return −1)
Return error

No

Yes

Data ok?

No

Yes

Return error

Counter2
= 5?

(return −2)

Save recieved byte
Start retrival of next byte

Wait for transmission to finish while((ICST & 0x10) == 0x0000) Repeats until end of transmission (IRQD)
(Automatic acknowledge to slave−transmitter)

Counter2++;

ICST=0x0000Reset I C registers2

Counter = 0

Create semaphor that locks I C acces2

DHCS Initiates Housekeeping I C command:2

Use Sub_system and look up adress (I2CADR)
in a table

Ack?

Wait for acknowledge

No

Yes

if (ICST & 0x08)=0 Tests LRB for a 0 = acknowledge was not recieved.
 {Counter++} Returns error message and breaks.

Restart all

ICCON &= ~0x0010; Stop pulse (BUM=0)
Counter = 0

int I2CHousekeeping(char Sub_system, datalength, *data_pointer)

while((ICST & 0x10) == 0x0000) Repeats until end of transmission (IRQD)

Transmit reciever adress
ICCON |= 0x0010; Start pulse + transmit buffer. (BUM=1, TRX =1 automatically)
ICRTB = 0x000 | 0xI2CAD R; Place reciever adress into buffer.

Go to Master−reciever mode ICCON &= ~0x0080; TRX = 0, master recieve mode.

Counter2=0

DataCounter =0

DataCounter=0;

Counter2++;

while((ICST & 0x10) == 0x0000) Repeats until end of transmission (IRQD)Wait for transmission to finish
(Automatic acknowledge to slave−transmitter)

Start dataretrival dummy = ICRTB; Start clock to recieve first byte (header).

Calculate CheckSum and compare
this to checksum in header

Save last byte

Free bus ICCON &= ~0x0010; Stop pulse (BUM=0)
ICST &= ~0x0010; Clear Interrupt bit (IRQD=0)

 return 0 Returns ok message and breaks.

*datapointer + Counter2 = ICRTB; Save last recieved byte and start new recieve

Save recieved byte
Start retrival of next byte

Wait for transmission to finish while((ICST & 0x10) == 0x0000) Repeats until end of transmission (IRQD)
(Automatic acknowledge to slave−transmitter)

Counter2++;
*datapointer + Counter2 = ICRTB; Save last recieved byte and start new recieve
ICCON |= 0x0020; Disables Acknowledge (ACKDIS) for last byte recieved. (NACK)

ICCON |= 0x0040; Prevents the start of a new recieve clock when reading from ICTRB.
*datapointer + Counter2 = ICRTB; Save last recieved

2Free semaphor (unlock I C bus)
and return

if(Counter2 == datalength − 1). I.e.: recieve 1 byte+ 1 header byte => datalength = 2
Yes

No

Second last
byte? {goto ...}

94

Appendix B

I2C read structure

Return error
(return ReturnValue)

NB!
When slave recieves only the header.
It indicates that it should gather data
according to modulenumber. This data
will then be transfered next time the
slave is asked to send.

DHCS Initiates send I C command:2

Create semaphor that locks I C acces2

=0?
ReturnValue

No

Yes

ReturnValue =I2CHousekeeping()

int I2Cread(char Sub_system, datalength, Int Module, *datapointer)

=0?
ReturnValueReturn error

(return ReturnValue)
No

Yes

ReturnValue =I2CWrite() parameter: Datalength=0

parameter: Datalength = datalength (parameter to I2Cread)

 Module= module (parameter to I2Cread)

 *datapointer = *datapointer (parameter to I2Cread)

 Sub_system = sub_system (parameter to I2Cread)

 Sub_system = sub_system (parameter to I2Cread)

Return ok
(return 0)

95

Appendix C

I2C write structure

Ack?

DHCS Initiates send I C command:

Read data into I C buffer
Calculate checksum
generate header = Length,module

Transmit reciever adress

ICST=0x0000Reset I C registers2

Use Sub_system and look up adress (I2CADR)
in a table

Wait for acknowledge

int I2Cwrite(char Sub_system, Int Module, int data_length, *data_pointer)

ICRTB = 0x000 | 0xI2CADR; Place reciever adress into buffer.
ICCON |= 0x0010; Start pulse + transmit buffer. (BUM=1, TRX =1 automatically)

2

while((ICST & 0x10) == 0x0000) Repeats until end of transmission (IRQD)

Counter = 0

= 5?
Counter

No

Yes

No

Yes

if (ICST & 0x08)=0 Tests LRB for a 0 = acknowledge was not recieved.

(return −1)
Return error

Transmit data

Wait for acknowledge

ICRTB = 0x000 | 0xDATA; Place DATAvalue into transmitterbuffer.

while((ICST & 0x10) == 0x0000) Repeats until end of transmission (IRQD)
if (ICST & 0x08)=0 Tests LRB for a 0 = acknowledge was not recieved.

 {return −2} Returns error message and breaks.

Ack?No

Yes

More data?
Yes

No

ICCON &= ~0x0010; Stop pulse (BUM=0)

Free semaphor (unlock I C bus) and return return 0 Returns ok message and breaks.2

Free bus

2

Create semaphor that locks I C acces2

 {Counter++} Returns error message and breaks.

Restart all

ICCON &= ~0x0010; Stop pulse (BUM=0)

Counter2
= 5?

Counter2 = 0

Counter = 0

Return error
(return −2)

Yes

No

Counter2++;

96

Appendix D

OBC software structure

97

O
B
C
so
ftw

a
r
e
str

u
c
tu
r
e

Take picture Flash EEPROM Meassure temp.
on MCU and Cam.

boot_pin

Initialize MCU hardware
registers from PROM

No Yes

Calculate EEPROM
Checksum

to stop
PSU (boot watchdog)
Send I C command to

Start DHCS

DHCS

Get housekeeping
(I C) (I C)2

high?

EEPROM
Go to first adress incontinue code from

PROM

Calculate Checksum
of EEPROM.
Compare this to value

ChecksumNo

data with hamming code

stored in EEPROM

Go to first PROM

Set up I C on MCU

basic beacon to stop
Send I C command to

adress

Yes

2

2

2

Send I C
2

2
Get value from external unit

(gain is a parameter)
Check and correct compresed

byte
Hammin encode Hamming decode

byte

 ok?

ICCON=0x0008; (sets MCU as I C master)
ICCFG=0x2022; (20h equals a bitrate of 97.6kb/sec

 (22h chooses SDA1 and SCL1 as port)

2

SYSCON |= 0x0004 (enables XBUS: I2C, XRAM)

MCU is turned to

I2Cwrite(parameters)

9
8

